Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elemental analysis emission spectrometer

Nygaard [752] has evaluated the application of the Spectraspan DC plasma emission spectrometer as an analysis tool for the determination of trace heavy metals in seawater. Sodium, calcium, and magnesium in seawater are shown to increase both the background and elemental line emission intensities. Optimum analytical emission lines and detection limits for seven elements are reported in Table 5.8. [Pg.265]

It is obvious from these experiments that the absorption spectrum of the Martian red surface can be simulated reasonably well by a non-unique variety of Fe rich phases or their mixtures as can the weak magnetism, so that a positive identification will probably only be possible, following further in situ analyses and/or sample return and analysis in the lab.Two Mars Exploration Rovers (MERs) are due to arrive at Mars in 2004 and will attempt to analyze rocks and soils on the surface using several small spectrometers, including PanCAM (an extended visible region spectrometer), MiniTES (a thermal emission spectrometer), APXS (alpha proton X-ray spectrometer measuring the major elements), Mossbauer (run at current local temperature), as well as a 5-level magnet array similar to that on-board the Pathfinder Lander. [Pg.430]

An inductively coupled plasma emission spectrometer does not require any lamps and can measure as many as —70 elements simultaneously. Color Plates 23 and 24 illustrate two designs for multielement analysis. In Plate 23, atomic emission enters the polychromator and... [Pg.463]

Judging from the degree of apparent interest and the number of papers published in the field of elemental TOF-MS over the last 3-4 years, it appears that this marriage is one full of promise for the future of elemental analysis. Perhaps the primary reason for such a trend is the need for a truly simultaneous mass spectrometer capable of extending capabilities beyond current instrumentation. The fields of ICP and GD atomic emission spectroscopy have been revolutionized by the incorporation of simultaneous array detectors. This revolution is just now beginning in the mass spectrometry field. [Pg.502]

Characterization of materials was achieved by powder X-ray diffraction, using a Siemens D500 diffractometer, and by scanning electron microscopy. Elemental analysis of pure single phase materials was carried out using a Jarrel Ash Inductively Coupled Plasma Atomic Emission Spectrometer. [Pg.270]

The inductively coupled argon plasma emission spectrometer used for quantitative analysis of trace elements. [Pg.58]

An ICAP emission spectrometer in a commercial analytical laboratory can successfully provide accurate, precise multielement data (at major, minor and trace levels) for biological and human-related samples for many of the elements of interest for the related disciplines. The relative freedom from interferences is a very positive attribute. The analytical cost of operation is attractive whenever more than four elements must be analyzed in a sample. The inability of the experimental approach used here to provide analytical data for individual species of the elements is a definite disadvantage when this information is required. The primary requirement for ICAP-simultaneous multielement analysis is exceptionally careful analytical sample preparation methods and laboratory techniques. [Pg.25]

Inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for the determination of most major and trace elements. The samples are fused in a Claisse semi-automatic fusion device in Pt-Au crucibles with lithium metaborate (4). The fusion product is dissolved in diluted HNO and brought to volume. For trace elements determination the sample is decomposed by HF, HNOg and HCIO. Scandium serves as an internal standard and is added to all samples and solutions. The instrument (product of Jobin Yvon, France)is calibrated using multi-element synthetic standards. The aqueous solutions are nebulized and injected into the heart of a plasma fire ball. A computerized multi-channel vacuum spectrometer has been programmed for multi-element analysis. [Pg.94]

Knowledge of the atomic spectra is also very important so as to be able to select interference-free analysis lines for a given element in a well-defined matrix at a certain concentration level. To do this, wavelength atlases or spectral cards for the different sources can be used, as they have been published for arcs and sparks, glow discharges and inductively coupled plasma atomic emission spectrometry (see earlier). In the case of ICP-OES, for example, an atlas with spectral scans around a large number of prominent analytical lines [329] is available, as well as tables with normalized intensities and critical concentrations for atomic emission spectrometers with different spectral bandwidths for a large number of these measured ICP line intensities, and also for intensities calculated from arc and spark tables [334]. The problem of the selection of interference-free lines in any case is much more complex than in AAS or AFS work. [Pg.202]

Analytical Methods for Urine and Blood. Specific biomarkers of lewisite exposure are currently based on a very limited number of in vitro experiments (Jakubowski et al., 1993 Wooten et al., 2002) and animal studies (Logan et al., 1999 Fidder et al., 2000). Wooten et al. (2002) developed a solid-phase microextraction (SPME) headspace sampling method for urine samples followed by GC-MS analysis. It is the most sensitive method reported to date with a lower limit of detection of 7.4 pg/mL. Animal experiments have been limited in number and in their scope. In one study of four animals, guinea pigs were given a subcutaneous dose of lewisite (0.5 mg/kg). Urine samples were analyzed for CVAA using both GC-MS and GC coupled with an atomic emission spectrometer set for elemental arsenic (Logan et al., 1999). The excretion profile indicated a very rapid elimination of CVAA in the urine. The mean concentrations detected were 3.5 pg/mL, 250 ng/mL, and 50 ng/mL for the 0-8, 8-16, and 16-24 h samples, respectively. Trace level concentrations... [Pg.529]

Figure 7.27 A combination sequential-simultaneous ICP emission spectrometer. Such a combination permits rapid multielement analysis using the polychromator and preselected wavelengths. The monochromator adds the flexibility to monitor additional elements or alternate wavelengths in case of spectral interferences. [Courtesy of Jobin Yvon, Inc., Horiba Group, Edison, NJ (www. jyhoriba.com).]... Figure 7.27 A combination sequential-simultaneous ICP emission spectrometer. Such a combination permits rapid multielement analysis using the polychromator and preselected wavelengths. The monochromator adds the flexibility to monitor additional elements or alternate wavelengths in case of spectral interferences. [Courtesy of Jobin Yvon, Inc., Horiba Group, Edison, NJ (www. jyhoriba.com).]...

See other pages where Elemental analysis emission spectrometer is mentioned: [Pg.299]    [Pg.333]    [Pg.171]    [Pg.15]    [Pg.665]    [Pg.480]    [Pg.31]    [Pg.129]    [Pg.29]    [Pg.171]    [Pg.165]    [Pg.29]    [Pg.27]    [Pg.58]    [Pg.846]    [Pg.338]    [Pg.24]    [Pg.171]    [Pg.32]    [Pg.193]    [Pg.258]    [Pg.22]    [Pg.429]    [Pg.208]    [Pg.426]    [Pg.1553]    [Pg.1573]    [Pg.71]    [Pg.318]    [Pg.449]    [Pg.483]    [Pg.251]    [Pg.1]    [Pg.243]    [Pg.113]    [Pg.327]    [Pg.1726]    [Pg.1990]    [Pg.507]    [Pg.539]   
See also in sourсe #XX -- [ Pg.84 , Pg.85 ]




SEARCH



Emission spectrometers

© 2024 chempedia.info