Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophoresis zeta potential

Obi, L, Ichikawa, Y, Kakutani, T., Senda, M., 1989a. Electrophoresis, zeta potential and surface charges of barley mesophyll protoplasts. Plant Cell Physiol. 30, 129-135. [Pg.388]

Response to Electric and Acoustic Fields. If the stabilization of a suspension is primarily due to electrostatic repulsion, measurement of the zeta potential, can detect whether there is adequate electrostatic repulsion to overcome polarizabiUty attraction. A common guideline is that the dispersion should be stable if > 30 mV. In electrophoresis the appHed electric field is held constant and particle velocity is monitored using a microscope and video camera. In the electrosonic ampHtude technique the electric field is pulsed, and the sudden motion of the charged particles relative to their counterion atmospheres generates an acoustic pulse which can be related to the charge on the particles and the concentration of ions in solution (18). [Pg.549]

Electroultrafiltration (EUF) combines forced-flow electrophoresis (see Electroseparations,electrophoresis) with ultrafiltration to control or eliminate the gel-polarization layer (45—47). Suspended colloidal particles have electrophoretic mobilities measured by a zeta potential (see Colloids Elotation). Most naturally occurring suspensoids (eg, clay, PVC latex, and biological systems), emulsions, and protein solutes are negatively charged. Placing an electric field across an ultrafiltration membrane faciUtates transport of retained species away from the membrane surface. Thus, the retention of partially rejected solutes can be dramatically improved (see Electrodialysis). [Pg.299]

Capillary electrophoretic separations are performed in small diameter tubes, made of Teflon, polyethylene, and other materials. The most frequently used material is fused silica. Fused silica capillaries are relatively inexpensive and are available in different internal and external diameters. An important advantage of a fused silica capillary is that the inner surface can be modified easily by either chemical or physical means. The chemistry of the silica surface is well established due to the popularity of silica surfaces in gas chromatography (GC) and liquid chromatography (LC). In capillary electrophoresis, the silica surface is responsible for the EOF. Using surface modification techniques, the zeta potential and correspondingly the EOF can be varied or eliminated. Column fabrication has been done on microchips.13... [Pg.392]

Electrophoresis involves the movement of a charged particle through a liquid under the influence of an applied potential difference. A sample is placed in an electrophoresis cell, usually a horizontal tube of circular cross section, fitted with two electrodes. When a known potential is applied across the electrodes, the particles migrate to the oppositely charged electrode. The direct current voltage applied needs to be adjusted to obtain a particle velocity that is neither too fast nor too slow to allow for errors in measurement and Brownian motion, respectively. It is also important that the measurement is taken reasonably quickly in order to avoid sedimentation in the cell. Prior to each measurement, the apparatus should be calibrated with particles of known zeta potential, such as rabbit erythrocytes. [Pg.280]

Initial studies were made with the Rank Bros, electrophoresis unit, using the dilute supernatant suspension over a dispersion of 3.33g of carbon black per liter of dodecane equilibrated for 24 hours with the added 0L0A-1200. The electrophoretic mobility (u) of 1-3 pm clumps of particles was observed at a field of 100 volts per centimeter. The zeta-potentials ( ) were calculated... [Pg.341]

The zeta potential can be measured by electrophoresis, which determines the velocity of particles in an electric field of known strength [144]. This particle velocity, v, can then be related to the electrical field strength, E, as the electrophoretic mobility, fi. This is shown by... [Pg.9]

Effect of adsorbed polymer on the double-layer. Because of the presence of adsorbed train segments, the double layer is modified. The zeta-potential, , is displaced because the adsorbed polymer displaces the plane of shear. The parameters for describing adsorbed polymers are the fraction of the first layer covered by segments, 0, and the effective thickness, A, of the polymer layer, The insert gives the distribution of segments over trains and loops for polyvinyl alcohol adsorbed on silver iodide. Results obtained from double layer and electrophoresis measurements. [Pg.124]

The second parameter influencing the movement of all solutes in free-zone electrophoresis is the electroosmotic flow. It can be described as a bulk hydraulic flow of liquid in the capillary driven by the applied electric field. It is a consequence of the surface charge of the inner capillary wall. In buffer-filled capillaries, an electrical double layer is established on the inner wall due to electrostatic forces. The double layer can be quantitatively described by the zeta-potential f, and it consists of a rigid Stern layer and a movable diffuse layer. The EOF results from the movement of the diffuse layer of electrolyte ions in the vicinity of the capillary wall under the force of the electric field applied. Because of the solvated state of the layer forming ions, their movement drags the whole bulk of solution. [Pg.22]

Hunter, R. J., Zeta Potentials in Colloid Science Principles and Applications, Academic Press, London, 1981. (Advanced level. The focus of this book is on the role of electrical double layers and zeta potential on electrophoresis and electroviscous effects. This volume presents some details on electrical double layers around nonspherical particles not discussed in the present book.)... [Pg.530]

In the quantitative sections of this chapter the primary emphasis has been on establishing the relationship between the electrophoretic properties of the system and the zeta potential. We saw in Chapter 11 that potential is a particularly useful quantity for the characterization of lyophobic colloids. In this context, then, the f potential is a valuable property to measure for a lyophobic colloid. For lyophilic colloids such as proteins, on the other hand, the charge of the particle is a more useful way to describe the molecule. In this section we consider briefly what information may be obtained about the charge of a particle from electrophoresis measurements. [Pg.565]

Criticize or defend the following proposition Zeta potentials for three different polystyrene latex preparations were calculated by the Helmholtz-Smoluchowski equation from electrophoresis measurements made in different concentrations of KCl.f... [Pg.572]

The aggregation number rt and radius of sodium dodecyl sulfate micelles (by light scattering) and the zeta potential (from electrophoresis, by an accurate formula) were determined in the presence of various concentrations of NaCl. ... [Pg.574]

Figure 4. The zeta potential of crushed, untreated 6% B.()- E-glass fibers (O) and silica glass (Oi in 10 M KNO, solution and in a 4% solution of y-aminopropylsilane f ) and ( ) measured using a Rank Brothers Electrophoresis analyzer. Figure 4. The zeta potential of crushed, untreated 6% B.()- E-glass fibers (O) and silica glass (Oi in 10 M KNO, solution and in a 4% solution of y-aminopropylsilane f ) and ( ) measured using a Rank Brothers Electrophoresis analyzer.
If a liquid moves tangential to a charged surface, then so-called electrokinetic phenomena arise [101]. Electrokinetic phenomena can be divided into four categories Electrophoresis, electro-osmosis, streaming potential, and sedimentation potential [102], In all these phenomena the zeta potential plays a crucial role. The classic theory of electrokinetic effects was proposed by Smoluchowski2 [103],... [Pg.72]

The charge on the liposomal surface is a property that has major effects on the stability, biodistribution, and cellular uptake of liposomes, and is governed by lipid headgroup composition and by pH. It can be monitored by micro electrophoresis (i.e., capillary zone electrophoresis), or by measurement of the zeta potential (Egorova, 1994). [Pg.402]

P. Mela, A. van der Berg, Y. Fintschenko, E.B. Cummings, B.A. Simmons and B. J. Kirby, The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices, Electrophoresis, 26 (2005) 1792-1799. [Pg.862]


See other pages where Electrophoresis zeta potential is mentioned: [Pg.174]    [Pg.174]    [Pg.27]    [Pg.2007]    [Pg.20]    [Pg.389]    [Pg.402]    [Pg.280]    [Pg.215]    [Pg.430]    [Pg.50]    [Pg.222]    [Pg.58]    [Pg.246]    [Pg.287]    [Pg.91]    [Pg.156]    [Pg.264]    [Pg.24]    [Pg.234]    [Pg.199]    [Pg.173]    [Pg.567]    [Pg.1252]    [Pg.54]    [Pg.430]    [Pg.79]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



Electrophoresis zeta potential, determination

Electrophoresis, zeta potential measurement

Zeta potential

© 2024 chempedia.info