Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron overview

Keywords Molecular electronics overview molecular circuit design, modelling and fabrication different length scales in molecular electronics. [Pg.363]

We realized an Eddy current SQUID system of the high frequency type a room temperature Eddy current probe is connected to a SQUID sensor at hquid nitrogen temperature. Fig.3 gives an overview over the components of the system, fig, 5 shows a schematic diagram of the electronics. [Pg.300]

In this chapter we shall first outline the basic concepts of the various mechanisms for energy redistribution, followed by a very brief overview of collisional intennoleciilar energy transfer in chemical reaction systems. The main part of this chapter deals with true intramolecular energy transfer in polyatomic molecules, which is a topic of particular current importance. Stress is placed on basic ideas and concepts. It is not the aim of this chapter to review in detail the vast literature on this topic we refer to some of the key reviews and books [U, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, and 32] and the literature cited therein. These cover a variety of aspects of tire topic and fiirther, more detailed references will be given tliroiighoiit this review. We should mention here the energy transfer processes, which are of fiindamental importance but are beyond the scope of this review, such as electronic energy transfer by mechanisms of the Forster type [33, 34] and related processes. [Pg.1046]

The history of EM (for an overview see table Bl.17,1) can be interpreted as the development of two concepts the electron beam either illuminates a large area of tire sample ( flood-beam illumination , as in the typical transmission electron microscope (TEM) imaging using a spread-out beam) or just one point, i.e. focused to the smallest spot possible, which is then scaimed across the sample (scaiming transmission electron microscopy (STEM) or scaiming electron microscopy (SEM)). In both situations the electron beam is considered as a matter wave interacting with the sample and microscopy simply studies the interaction of the scattered electrons. [Pg.1624]

Professor Bartlett brought the CC method, developed earlier by others, into the mainstream of electronic structure theory. For a nice overview of his work on the CC method see ... [Pg.2198]

Good early overviews of the electron propagator (that is used to obtain IP and EA data) and of the polarization propagator are given in ... [Pg.2200]

Simons J 1972 Energy-shift theory of low-lying excited electronic states of molecules J. Chem. Phys. 57 3787-92 A more recent overview of much of the EOM, Greens function, and propagator field is given in ... [Pg.2200]

Bartlett R J 1995 Coupled-cluster theory an overview of recent developments Modern Electronic Structure Theory vo 2, ed D R Yarkony (Singapore World Scientific) pp 1047-131... [Pg.2200]

A very recent overview, including efforts to interface semi-empirical electronic structure with molecular mechanics treatments of some degrees of freedom is given by ... [Pg.2201]

For larger systems, various approximate schemes have been developed, called mixed methods as they treat parts of the system using different levels of theory. Of interest to us here are quantuin-seiniclassical methods, which use full quantum mechanics to treat the electrons, but use approximations based on trajectories in a classical phase space to describe the nuclear motion. The prefix quantum may be dropped, and we will talk of seiniclassical methods. There are a number of different approaches, but here we shall concentrate on the few that are suitable for direct dynamics molecular simulations. An overview of other methods is given in the introduction of [21]. [Pg.252]

This Introductory Section was intended to provide the reader with an overview of the structure of quantum mechanics and to illustrate its application to several exactly solvable model problems. The model problems analyzed play especially important roles in chemistry because they form the basis upon which more sophisticated descriptions of the electronic structure and rotational-vibrational motions of molecules are built. The variational method and perturbation theory constitute the tools needed to make use of solutions of... [Pg.73]

An overview of the atomistic and electronic phenomena utilized in electroceramic technology is given in Figure 3. More detailed discussions of compositional families and stmcture—property relationships can be found in other articles. (See for example, Ferroelectrics and Magnetic materials.)... [Pg.309]

Fig. 3. An overview of atomistic mechanisms involved in electroceramic components and the corresponding uses (a) ferroelectric domains capacitors and piezoelectrics, PTC thermistors (b) electronic conduction NTC thermistor (c) insulators and substrates (d) surface conduction humidity sensors (e) ferrimagnetic domains ferrite hard and soft magnets, magnetic tape (f) metal—semiconductor transition critical temperature NTC thermistor (g) ionic conduction gas sensors and batteries and (h) grain boundary phenomena varistors, boundary layer capacitors, PTC thermistors. Fig. 3. An overview of atomistic mechanisms involved in electroceramic components and the corresponding uses (a) ferroelectric domains capacitors and piezoelectrics, PTC thermistors (b) electronic conduction NTC thermistor (c) insulators and substrates (d) surface conduction humidity sensors (e) ferrimagnetic domains ferrite hard and soft magnets, magnetic tape (f) metal—semiconductor transition critical temperature NTC thermistor (g) ionic conduction gas sensors and batteries and (h) grain boundary phenomena varistors, boundary layer capacitors, PTC thermistors.
Materials play an important role ia the electronics iadustry. The effectiveness of the electrical performance of the system, its reUabiUty, and its cost aU. depend on the packagiag materials used, which are chosen for their properties and appHcations. As a result, the practicing engineer must have ready access to current information on the materials that can be used ia product development. This article gives an overview of the various material choices for the elements of an electronic product. [Pg.524]

This article addresses the synthesis, properties, and appHcations of redox dopable electronically conducting polymers and presents an overview of the field, drawing on specific examples to illustrate general concepts. There have been a number of excellent review articles (1—13). Metal particle-filled polymers, where electrical conductivity is the result of percolation of conducting filler particles in an insulating matrix (14) and ionically conducting polymers, where charge-transport is the result of the motion of ions and is thus a problem of mass transport (15), are not discussed. [Pg.35]

The properties of electron transfer proteins that are discussed here specifically affect the electron transfer reaction and not the association or binding of the reactants. A brief overview of these properties is given here more detailed discussions may be found elsewhere (e.g.. Ref. 1). The process of electron transfer is a very simple chemical reaction, i.e., the transfer of an electron from the donor redox site to the acceptor redox site. [Pg.393]

I. Goldstein, eds.) Plenum Press, 1979. A good overview of analytical electron microscopy. [Pg.147]

Useful overviews of all SNMS modes have been provided by Oeschner and Pal-lix and Becker, and thorough reviews of electron impact SNMS in particular have been provided recendy both by Ganschow and by Jede. ... [Pg.572]

In an excellent historical overview of these stages and the intellectual and practical problems which had to be overcome, Mulvey (1995) remarks that the first production microscopes pursued exactly the same electron-optical design as Ruska s first experimental microscope. The stages of subsequent improvement are outlined by Mulvey, to whom the reader is referred for further details. [Pg.218]

By the time the next overview of electrical properties of polymers was published (Blythe 1979), besides a detailed treatment of dielectric properties it included a chapter on conduction, both ionic and electronic. To take ionic conduction first, ion-exchange membranes as separation tools for electrolytes go back a long way historically, to the beginning of the twentieth century a polymeric membrane semipermeable to ions was first used in 1950 for the desalination of water (Jusa and McRae 1950). This kind of membrane is surveyed in detail by Strathmann (1994). Much more recently, highly developed polymeric membranes began to be used as electrolytes for experimental rechargeable batteries and, with particular success, for fuel cells. This important use is further discussed in Chapter 11. [Pg.333]

This chapter has only scratched the surface of the multitude of databases and data reviews that are now available. For instance, more than 100 materials databases of many kinds are listed by Wawrousek et al. (1989), in an article published by one of the major repositories of such databases. More and more of them are accessible via the internet. The most comprehensive recent overview of Electronic access to factual materials information the state of the art is by Westbrook et al. (1995), This highly informative essay includes a taxonomy of materials information , focusing on the many different property considerations and property types which an investigator can be concerned with. Special attention is paid to mechanical properties. The authors focus also on the quality and relutbility of data, quality of source, reproducibility, evaluation status, etc., all come into this, and alarmingly. [Pg.497]

Ab initio molecular orbital theory is concerned with predicting the properties of atomic and molecular systems. It is based upon the fundamental laws of quantum mechanics and uses a variety of mathematical transformation and approximation techniques to solve the fundamental equations. This appendix provides an introductory overview of the theory underlying ab initio electronic structure methods. The final section provides a similar overview of the theory underlying Density Functional Theory methods. [Pg.253]

Chapter 1, Computational Models and Model Chemistries, provides an overview of the computational chemistry field and where electronic structure theory fits within it. It also discusses the general theoretical methods and procedures employed in electronic structure calculations (a more detailed treatment of the underlying quantum mechanical theory is given in Appendix A). [Pg.316]


See other pages where Electron overview is mentioned: [Pg.4]    [Pg.1647]    [Pg.1648]    [Pg.3032]    [Pg.266]    [Pg.533]    [Pg.488]    [Pg.159]    [Pg.170]    [Pg.179]    [Pg.247]    [Pg.251]    [Pg.50]    [Pg.6]    [Pg.65]    [Pg.129]    [Pg.131]    [Pg.239]    [Pg.277]    [Pg.403]    [Pg.442]    [Pg.473]    [Pg.483]    [Pg.33]    [Pg.82]    [Pg.319]   
See also in sourсe #XX -- [ Pg.16 , Pg.107 ]

See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Electron configurations, overview

Electron microscopy overview

Electron spin resonance overview

Electron transport chain overview

Electron transport from water to NADP an overview

Electron-transfer reactions overview

Electronic spectroscopy overview

Electronic structure overview

Electronics overview

OVERVIEW OF ELECTRONIC DEVICES

Overview electronic

Overview electronic

Overview of Computational Chemistry the electronic structure theory

Photochemical electron transfer in PS II - an overview

THE ELECTRONIC LEVEL I AN OVERVIEW OF BAND THEORY

Transmission electron microscopy overview

© 2024 chempedia.info