Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic structure calculations transition state theory

The author would like to thank all the group members in the past and present who carried out all the researches discussed in this chapter Drs. C. Zhu, G. V. Mil nikov, Y. Teranishi, K. Nagaya, A. Kondorskiy, H. Fujisaki, S. Zou, H. Tamura, and P. Oloyede. He is indebted to Professors S. Nanbu and T. Ishida for their contributions, especially on molecular functions and electronic structure calculations. He also thanks Professor Y. Zhao for his work on the nonadiabatic transition state theory and electron transfer. The work was supported by a Grant-in-Aid for Specially Promoted Research on Studies of Nonadiabatic Chemical Dynamics based on the Zhu-Nakamura Theory from MEXT of Japan. [Pg.207]

Third, with recent advances made in theoretical and computational quantum mechanics, it is possible to estimate thermochemical information via electronic structure calculations (Dewar, 1975 Dunning et al., 1988). Such a capability, together with the transition state theory (TST) (Eyring, 1935), also allows the determination of the rate parameters of elementary reactions from first principles. Our ability to estimate activation energy barriers is... [Pg.97]

In addition to experiments, a range of theoretical techniques are available to calculate thermochemical information and reaction rates for homogeneous gas-phase reactions. These techniques include ab initio electronic structure calculations and semi-empirical approximations, transition state theory, RRKM theory, quantum mechanical reactive scattering, and the classical trajectory approach. Although still computationally intensive, such techniques have proved themselves useful in calculating gas-phase reaction energies, pathways, and rates. Some of the same approaches have been applied to surface kinetics and thermochemistry but with necessarily much less rigor. [Pg.476]

In this chapter, we have developed the information content of different excited state spectroscopic methods in terms of ligand field theory and the covalency of L—M bonds. Combined with the ground-state methods presented in the following chapters, spectroscopy and magnetism experimentally define the electronic structure of transition metal sites. Calculations supported by these data can provide fundamental insight into the physical properties of inorganic materials and their reactivities in catalysis and electron transfer. The contribution of electronic structure to function has been developed in Ref. 61. [Pg.34]

Theoretical studies of the microsolvation effect on SN2 reactions have also been reported by our coworkers and ourselves (Gonzalez-Lafont et al. 1991 Truhlar et al. 1992 Tucker and Truhlar 1990 Zhao et al. 1991b, 1992). Two approaches were used for interfacing electronic structure calculations with variational transitional state theory (VST) and tunneling calculations. We analyzed both the detailed dynamics of microsolvation and also its macroscopic consequences (rate coefficient values and kinetic isotope effects and their temperature... [Pg.25]

Gonzalez-Lafont A, Troung TN, Truhlar DG (1991) Interpolated variational transition-state theory practical methods for estimating variational transition-state properties and tunneling contributions to chemical reaction rates from electronic structure calculations, J Phys Chem 95 8875-8894... [Pg.590]

CONTENTS Introduction, Thom H. Dunning, Jr. Electronic Structure Theory and Atomistic Computer Simulations of Materials, Richard P. Messmer, General Electric Corporate Research and Development and the University of Pennsylvania. Calculation of the Electronic Structure of Transition Metals in Ionic Crystals, Nicholas W. Winter, Livermore National Laboratory, David K. Temple, University of California, Victor Luana, Universidad de Oviedo and Russell M. Pitzer, The Ohio State University. Ab Initio Studies of Molecular Models of Zeolitic Catalysts, Joachim Sauer, Central Institute of Physical Chemistry, Germany. Ab Inito Methods in Geochemistry and Mineralogy, Anthony C. Hess, Battelle, Pacific Northwest Laboratories and Paul F. McMillan, Arizona State University. [Pg.356]

In 1984 Krauss and Stevens described tests and applications of the effective potential method used to gain knowledge of the electronic structure of the molecules in order to analyze the accuracy of the experimentally deduced dissociation energies of refractory metal salts [3]. They used the development of ab initio theoretical methods for the calculation of potential energy surfaces, which further allowed the direct computation of certain rate constants. Transition state theory was also utilized for this computation of some rate constants. However, as discussed by Krauss and Stevens, as of the mid 1980 s computational techniques were not yet readily applied to atmospheric science. Computing power and theoretical methods since these seminal reports have been greatly advanced. [Pg.5]

The simplest way to combine electronic stnicture calculations with nuclear dynamics is to use harmonic analysis to estimate both vibrational averaging effects on physico-chemical observables and reaction rates in terms of conventional transition state theory, possibly extended to incorporate tunneling corrections. This requires, at least, the knowledge of the structures, energetics, and harmonic force fields of the relevant stationary points (i.e. energy minima and first order saddle points connecting pairs of minima). Small anq)litude vibrations around stationary points are expressed in terms of normal modes Q, which are linearly related to cartesian coordinates x... [Pg.488]

Relativistic and electron correlation effects play an important role in the electronic structure of molecules containing heavy elements (main group elements, transition metals, lanthanide and actinide complexes). It is therefore mandatory to account for them in quantum mechanical methods used in theoretical chemistry, when investigating for instance the properties of heavy atoms and molecules in their excited electronic states. In this chapter we introduce the present state-of-the-art ab initio spin-orbit configuration interaction methods for relativistic electronic structure calculations. These include the various types of relativistic effective core potentials in the scalar relativistic approximation, and several methods to treat electron correlation effects and spin-orbit coupling. We discuss a selection of recent applications on the spectroscopy of gas-phase molecules and on embedded molecules in a crystal enviromnent to outline the degree of maturity of quantum chemistry methods. This also illustrates the necessity for a strong interplay between theory and experiment. [Pg.476]


See other pages where Electronic structure calculations transition state theory is mentioned: [Pg.124]    [Pg.111]    [Pg.438]    [Pg.351]    [Pg.396]    [Pg.321]    [Pg.134]    [Pg.160]    [Pg.147]    [Pg.134]    [Pg.192]    [Pg.164]    [Pg.3]    [Pg.357]    [Pg.358]    [Pg.422]    [Pg.30]    [Pg.837]    [Pg.355]    [Pg.3]    [Pg.381]    [Pg.94]    [Pg.457]    [Pg.600]    [Pg.625]    [Pg.110]    [Pg.190]    [Pg.455]    [Pg.134]    [Pg.100]    [Pg.858]    [Pg.121]    [Pg.125]    [Pg.877]    [Pg.1243]    [Pg.353]    [Pg.458]    [Pg.381]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



20-electron transition state

4.14. Calculated electronic structure

Electronic calculation

Electronic states calculations

Electronic structure calculations

Electronic transition state theory

Electronic transition, calculation

Structural theory

Structure calculations

Structure states

Structure theory

Theory calculation

Transition electronic states

Transition states electronic structure

© 2024 chempedia.info