Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic excitation fluorescence

Wokosin D L, Centonze V, White J G, Armstrong D, Robertson G and Ferguson A I 1996 All-solid-state ultrafast lasers facilitate multiphoton excitation fluorescence imaging IEEE J. Sel. Top. Quantum Electron. 21051-65... [Pg.1674]

A number of surface-sensitive spectroscopies rely only in part on photons. On the one hand, there are teclmiques where the sample is excited by electromagnetic radiation but where other particles ejected from the sample are used for the characterization of the surface (photons in electrons, ions or neutral atoms or moieties out). These include photoelectron spectroscopies (both x-ray- and UV-based) [89, 9Q and 91], photon stimulated desorption [92], and others. At the other end, a number of methods are based on a particles-in/photons-out set-up. These include inverse photoemission and ion- and electron-stimulated fluorescence [93, M]- All tirese teclmiques are discussed elsewhere in tliis encyclopaedia. [Pg.1795]

Sensitivity levels more typical of kinetic studies are of the order of lO molecules cm . A schematic diagram of an apparatus for kinetic LIF measurements is shown in figure C3.I.8. A limitation of this approach is that only relative concentrations are easily measured, in contrast to absorjDtion measurements, which yield absolute concentrations. Another important limitation is that not all molecules have measurable fluorescence, as radiationless transitions can be the dominant decay route for electronic excitation in polyatomic molecules. However, the latter situation can also be an advantage in complex molecules, such as proteins, where a lack of background fluorescence allow s the selective introduction of fluorescent chromophores as probes for kinetic studies. (Tryptophan is the only strongly fluorescent amino acid naturally present in proteins, for instance.)... [Pg.2958]

A dye molecule has one or more absorption bands in the visible region of the electromagnetic spectrum (approximately 350-700 nm). After absorbing photons, the electronically excited molecules transfer to a more stable (triplet) state, which eventually emits photons (fluoresces) at a longer wavelength (composing three-level system.) The delay allows an inverted population to build up. Sometimes there are more than three levels. For example, the europium complex (Figure 18.15) has a four-level system. [Pg.132]

For electronically excited species, the emitted light can be used for spectroscopic purposes, as in fluorescence analysis. [Pg.387]

X-Ray Emission and Fluorescence. X-ray analysis by direct emission foUowing electron excitation is of Hmited usefulness because of inconveniences in making the sample the anode of an x-ray tube. An important exception is the x-ray microphobe (275), in which an electron beam focused to - 1 fim diameter excites characteristic x-rays from a small sample area. Surface corrosion, grain boundaries, and inclusions in alloys can be studied with detectabiHty Hmits of -- 10 g (see Surface and interface analysis). [Pg.320]

Though we and others (27-29) have demonstrated the utility and the improved sensitivity of the peroxyoxalate chemiluminescence method for analyte detection in RP-HPLC separations for appropriate substrates, a substantial area for Improvement and refinement of the technique remains. We have shown that the reactions of hydrogen peroxide and oxalate esters yield a very complex array of reactive intermediates, some of which activate the fluorophor to its fluorescent state. The mechanism for the ester reaction as well as the process for conversion of the chemical potential energy into electronic (excited state) energy remain to be detailed. Finally, the refinement of the technique for routine application of this sensitive method, including the optimization of the effi-ciencies for each of the contributing factors, is currently a major effort in the Center for Bioanalytical Research. [Pg.153]

In order to discuss the geometrical structures of electronically excited states, the same procedure as described above is used, except for the use of a different value 3.3 for exponent a in the exponential form of the resonance integral This value of a was determined so that the predicted fluorescence energy from the lowest singlet excited state CB2J in benzene may fit the experimental value. [Pg.25]

Figure 10. Electron excitations in radicals (a) Collective representation of one-electron transitions of the A, B, and C types if denotes MO (b) LCI energy-level scheme (Jablonski diagram) for doublet and quartet states indicating why with radicals fluorescence (- - -) but not phosphorescence is observed. Spin-forbidden transitions are represented by dashed lines. Figure 10. Electron excitations in radicals (a) Collective representation of one-electron transitions of the A, B, and C types if denotes MO (b) LCI energy-level scheme (Jablonski diagram) for doublet and quartet states indicating why with radicals fluorescence (- - -) but not phosphorescence is observed. Spin-forbidden transitions are represented by dashed lines.

See other pages where Electronic excitation fluorescence is mentioned: [Pg.263]    [Pg.319]    [Pg.319]    [Pg.414]    [Pg.384]    [Pg.319]    [Pg.257]    [Pg.461]    [Pg.263]    [Pg.319]    [Pg.319]    [Pg.414]    [Pg.384]    [Pg.319]    [Pg.257]    [Pg.461]    [Pg.310]    [Pg.2139]    [Pg.2492]    [Pg.424]    [Pg.133]    [Pg.262]    [Pg.262]    [Pg.262]    [Pg.300]    [Pg.481]    [Pg.320]    [Pg.381]    [Pg.186]    [Pg.347]    [Pg.409]    [Pg.2]    [Pg.58]    [Pg.158]    [Pg.158]    [Pg.163]    [Pg.165]    [Pg.8]    [Pg.140]    [Pg.199]    [Pg.259]    [Pg.196]    [Pg.3]    [Pg.14]    [Pg.405]    [Pg.386]    [Pg.628]    [Pg.98]    [Pg.70]    [Pg.64]   
See also in sourсe #XX -- [ Pg.231 , Pg.232 ]




SEARCH



Electronic excited

Electronical excitation

Electrons excitation

Electrons, excited

Excited fluorescence

© 2024 chempedia.info