Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lowest singlet excited state

In Chap. 6, we discussed low-energy optical excitation states, the singlet and triplet excitons and energy transfer. The primary experimental method applied there was optical spectroscopy in the visible, in the near IR and in the UV spectral ranges. In the present chapter, we treat the structure and the dynamics of localised triplet states, of triplet mini-excitons, and of triplet excitons in molecular crystals. The primary experimental method for the investigation of the lowest-energy triplet level Ti is electron-spin resonance (ESR) (Fig. 7.1). [Pg.177]

To define the state yon want to calculate, you must specify the m u Itiplicity. A system with an even ii n m ber of electron s n sn ally has a closed-shell ground state with a multiplicity of I (a singlet). Asystem with an odd niim her of electrons (free radical) nsnally has a multiplicity of 2 (a doublet). The first excited state of a system with an even ii nm ber of electron s usually has a m n Itiplicity of 3 (a triplet). The states of a given m iiltiplicity have a spectrum of states —the lowest state of the given multiplicity, the next lowest state of the given multiplicity, and so on. [Pg.218]

If the mini her of electrons, N, is even, yon can haven dosed shell (as shown ) where the occupied orbitals each contain two electron s. For an odd n nrn her of electron s, at least on e orbital rn ust be singly occupied. In the example, three orbitals are occupied by-electron s and two orbitals arc nn occupied. Th e h ighest occupied nioleciilar orbital (HOMO is t[r), and the lowest unoccupied molecular orbital (LUMO) is The example above is a singlet, a state oh total spin S=0. Exciting one electron from the HOMO to the LUMO orbital would give one ol the I ollowing excited states ... [Pg.221]

Ah initio programs attempt to compute the lowest-energy state of a specified multiplicity. Thus, calculations for different spin states will give the lowest-energy state and a few of the excited states. This is most often done to determine singlet-triplet gaps in organic molecules. [Pg.216]

The UHF option allows only the lowest state of a given multiplicity to be requested. Thus, for example, you could explore the lowest Triplet excited state of benzene with the UHF option, but could not ask for calculations on an excited singlet state. This is because the UHF option in HyperChem does not allow arbitrary orbital occupations (possibly leading to an excited single determinant of different spatial symmetry than the lowest determinant of the same multiplicity), nor does it perform a Configuration Interaction (Cl) calculation that allows a multitude of states to be described. [Pg.233]

Fluorescence from the ExcitedSj State. In Figure 1, after absorption (A) and vibrational deactivation (VD) occur, the lowest or nearly lowest level of the singlet excited state is reached. If the molecule is fluorescent with a high quantum efficiency, fluorescent emission of a quantum of... [Pg.299]

Indazoles have been subjected to certain theoretical calculations. Kamiya (70BCJ3344) has used the semiempirical Pariser-Parr-Pople method with configuration interaction for calculation of the electronic spectrum, ionization energy, tt-electron distribution and total 7T-energy of indazole (36) and isoindazole (37). The tt-densities and bond orders are collected in Figure 5 the molecular diagrams for the lowest (77,77 ) singlet and (77,77 ) triplet states have also been calculated they show that the isomerization (36) -> (37) is easier in the excited state. [Pg.175]

In the lowest optieally excited state of the molecule, we have one eleetron (ti ) and one hole (/i ), each with spin 1/2 which couple through the Coulomb interaetion and can either form a singlet 5 state (5 = 0), or a triplet T state (S = 1). Since the electric dipole matrix element for optical transitions — ep A)/(me) does not depend on spin, there is a strong spin seleetion rule (AS = 0) for optical electric dipole transitions. This strong spin seleetion rule arises from the very weak spin-orbit interaction for carbon. Thus, to turn on electric dipole transitions, appropriate odd-parity vibrational modes must be admixed with the initial and (or) final electronic states, so that the w eak absorption below 2.5 eV involves optical transitions between appropriate vibronic levels. These vibronic levels are energetically favored by virtue... [Pg.49]


See other pages where Lowest singlet excited state is mentioned: [Pg.136]    [Pg.41]    [Pg.368]    [Pg.136]    [Pg.310]    [Pg.168]    [Pg.77]    [Pg.209]    [Pg.68]    [Pg.148]    [Pg.368]    [Pg.841]    [Pg.205]    [Pg.467]    [Pg.4]    [Pg.521]    [Pg.204]    [Pg.120]    [Pg.310]    [Pg.585]    [Pg.16]    [Pg.2419]    [Pg.2420]    [Pg.2948]    [Pg.47]    [Pg.233]    [Pg.294]    [Pg.410]    [Pg.47]    [Pg.232]    [Pg.233]    [Pg.424]    [Pg.50]    [Pg.50]    [Pg.317]    [Pg.79]    [Pg.136]    [Pg.168]    [Pg.402]    [Pg.404]    [Pg.405]   
See also in sourсe #XX -- [ Pg.237 ]




SEARCH



Excited singlet

Excited singlet states

Lowest excited states

Lowest state

Singlet excitation

Singlet states

Tautomerization in the Lowest Excited Singlet State

The Lowest Energy Excited Singlet State

© 2024 chempedia.info