Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer process transport

Electron transfer reactions are conceptually simple. The coupled stmctural changes may be modest, as in tire case of outer-sphere electron transport processes. Otlier electron transfer processes result in bond fonnation or... [Pg.2971]

The amide functionality plays an important role in the physical and chemical properties of proteins and peptides, especially in their ability to be involved in the photoinduced electron transfer process. Polyamides and proteins are known to take part in the biological electron transport mechanism for oxidation-reduction and photosynthesis processes. Therefore studies of the photochemistry of proteins or peptides are very important. Irradiation (at 254 nm) of the simplest dipeptide, glycylglycine, in aqueous solution affords carbon dioxide, ammonia and acetamide in relatively high yields and quantum yield (0.44)202 (equation 147). The reaction mechanism is thought to involve an electron transfer process. The isolation of intermediates such as IV-hydroxymethylacetamide and 7V-glycylglycyl-methyl acetamide confirmed the electron-transfer initiated free radical processes203 (equation 148). [Pg.739]

In conclusion, one always tries to study the electron transfer process under conditions where mass transport is governed only by diffusion (for which the laws are rigorously known). [Pg.36]

Most compounds oxidized by the electron transport chain donate hydrogen to NAD+, and then NADH is reoxidized in a reaction coupled to reduction of a flavoprotein. During this transformation, sufficient energy is released to enable synthesis of ATP from ADP. The reduced flavoprotein is reoxidized via reduction of coenzyme Q subsequent redox reactions then involve cytochromes and electron transfer processes rather than hydrogen transfer. In two of these cytochrome redox reactions, there is sufficient energy release to allow ATP synthesis. In... [Pg.578]

A key aspect of metal oxides is that they possess multiple functional properties acid-base, electron transfer and transport, chemisorption by a and 7i-bonding of hydrocarbons, O-insertion and H-abstraction, etc. This multi-functionality allows them to catalyze complex selective multistep transformations of hydrocarbons, as well as other catalytic reactions (NO,c conversion, for example). The control of the catalyst multi-functionality requires the ability to control not only the nanostructure, e.g. the nano-scale environment around the active site, " but also the nano-architecture, e.g. the 3D spatial organization of nano-entities. The active site is not the only relevant aspect for catalysis. The local area around the active site orients or assists the coordination of the reactants, and may induce sterical constrains on the transition state, and influences short-range transport (nano-scale level). Therefore, it plays a critical role in determining the reactivity and selectivity in multiple pathways of transformation. In addition, there are indications pointing out that the dynamics of adsorbed species, e.g. their mobility during the catalytic processes which is also an important factor determining the catalytic performances in complex surface reaction, " is influenced by the nanoarchitecture. [Pg.81]

In voltammetric experiments, electroactive species in solution are transported to the surface of the electrodes where they undergo charge transfer processes. In the most simple of cases, electron-transfer processes behave reversibly, and diffusion in solution acts as a rate-determining step. However, in most cases, the voltammetric pattern becomes more complicated. The main reasons for causing deviations from reversible behavior include (i) a slow kinetics of interfacial electron transfer, (ii) the presence of parallel chemical reactions in the solution phase, (iii) and the occurrence of surface effects such as gas evolution and/or adsorption/desorption and/or formation/dissolution of solid deposits. Further, voltammetric curves can be distorted by uncompensated ohmic drops and capacitive effects in the cell [81-83]. [Pg.36]

Heme coenzymes participate in a variety of electron-transfer reactions, including reactions of peroxides and 02. Iron-sulfur clusters, composed of Fe and S in equal numbers with cysteinyl side chains of proteins, mediate other electron-transfer processes, including the reduction of N2 to 2 NH3. Nicotinamide, flavin, and heme coenzymes act cooperatively with iron-sulfur proteins in multienzyme systems that catalyze hydroxylations of hydrocarbons and also in the transport of electrons from foodstuffs... [Pg.222]

There are several reasons for the appeal of polymer modification immobilization is technically easier than working with monolayers the films are generally more stable and because of the multiple layers redox sites, the electrochemical responses are larger. Questions remain, however, as to how the electrochemical reaction of multimolecular layers of electroactive sites in a polymer matrix occur, e.g., mass transport and electron transfer processes by which the multilayers exchange electrons with the electrode and with reactive molecules in the contacting solution [9]. [Pg.248]

This brief review attempts to summarize the salient features of chemically modified electrodes, and, of necessity, does not address many of the theoretical and practical concepts in any real detail. It is clear, however, that this field will continue to grow rapidly in the future to provide electrodes for a variety of purposes including electrocatalysis, electrochromic displays, surface corrosion protection, electrosynthesis, photosensitization, and selective chemical concentration and analysis. But before many of these applications are realized, numerous unanswered questions concerning surface orientation, bonding, electron-transfer processes, mass-transport phenomena and non-ideal redox behavior must be addressed. This is a very challenging area of research, and the potential for important contributions, both fundamental and applied, is extremely high. [Pg.254]

The application of electrochemical methods for the study of the kinetics and mechanisms of reactions of electro chemically generated intermediates is intimately related to the thermodynamics and kinetics of the heterogeneous electron transfer process and to the mode of transport of material to and from the working electrode. For that reason, we review below some basics, including the relationship between potential and current (Section 6.5.1), the electrochemical double layer and the double layer charging current (Section 6.5.2), and the... [Pg.136]

Fick s first and second laws (Equations 6.15 and 6.18), together with Equation 6.17, the Nernst equation (Equation 6.7) and the Butler-Volmer equation (Equation 6.12), constitute the basis for the mathematical description of a simple electron transfer process, such as that in Equation 6.6, under conditions where the mass transport is limited to linear semi-infinite diffusion, i.e. diffusion to and from a planar working electrode. The term semi-infinite indicates that the electrode is considered to be a non-permeable boundary and that the distance between the electrode surface and the wall of the cell is larger than the thickness, 5, of the diffusion layer defined as Equation 6.19 [1, 33] ... [Pg.140]

Because the flow of electric current always involves the transport of matter in solution and chemical transformations at the solution-electrode interface, local behavior can only be approached. It can be approximated, however, by a reference electrode whose potential is controlled by a well-defined electron-transfer process in which the essential solid phases are present in an adequate amount and the solution constituents are present at sufficiently high concentrations. The electron transfer is a dynamic process, occurring even when no net current flows and the larger the anodic and cathodic components of this exchange current, the more nearly reversible and nonpolarizable the reference electrode will be. A large exchange current increases the slope of the current-potential curve so that the potential of the electrode is more nearly independent of the current. The current-potential curves (polarization curves) are frequently used to characterize the reversibility of reference electrodes. [Pg.184]

Activation less process — is an electrochemical reaction occurring with zero - activation energy. This behavior is predicted for the region of high - overvoltage which is rarely available in experiments because of - mass transport limitations. The prediction of such type of processes follows from the theory of - Levich and his school [i, ii]. For the diabatic - electron transfer processes the total current density j can be estimated by integrating over the energy levels of a metal electrode e ... [Pg.9]

There are a considerable number of reactions in which the products contain two electrons, more than the starting compounds, and the consecutive two-step one-electron electron transfer process proves to be energetically unfavorable. In such cases, it is presumed that the two-electron process occurs in one elementary two-electron step. An example of a two-electron process is the hydride transfer, when two electrons are transported together with a proton. BH4, hydroquinones and reduced nicotinamides are typical hydrid donors. A specific feature of quinones is the capacity to accept and then to reversibly release electrons one by one or two electrons as a hydride. Therefore, quinones can serve as a molecular device, which can switch consecutive one-electron process to single two-electron process. [Pg.66]

Oxidative phosphorylation occurs in the mitochondria of all animal and plant tissues, and is a coupled process between the oxidation of substrates and production of ATP. As the TCA cycle runs, hydrogen ions (or electrons) are carried by the two carrier molecules NAD or FAD to the electron transport pumps. Energy released by the electron transfer processes pumps the protons to the intermembrane region, where they accumulate in a high enough concentration to phosphorylate the ADP to ATP. The overall process is called oxidative phosphorylation. The cristae have the major coupling factors F, (a hydrophilic protein) and F0 (a hydrophobic lipoprotein complex). F, and F0 together comprise the ATPase (also called ATP synthase) complex activated by Mg2+. F0 forms a proton translocation pathway and Fj... [Pg.551]


See other pages where Electron transfer process transport is mentioned: [Pg.2987]    [Pg.390]    [Pg.178]    [Pg.65]    [Pg.66]    [Pg.73]    [Pg.564]    [Pg.231]    [Pg.441]    [Pg.215]    [Pg.223]    [Pg.4]    [Pg.188]    [Pg.107]    [Pg.103]    [Pg.202]    [Pg.321]    [Pg.52]    [Pg.290]    [Pg.358]    [Pg.178]    [Pg.106]    [Pg.150]    [Pg.305]    [Pg.442]    [Pg.611]    [Pg.278]    [Pg.303]    [Pg.3]    [Pg.239]    [Pg.456]    [Pg.338]    [Pg.130]    [Pg.171]    [Pg.417]   
See also in sourсe #XX -- [ Pg.259 , Pg.262 , Pg.264 , Pg.265 , Pg.278 ]




SEARCH



Electron Transfer and Charge Transport Process in DNA

Electron processes

Electron transporter

Electron transporting

Electron-transfer processes

Electronic processes

Transport processes

Transportation processes

© 2024 chempedia.info