Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions parallel

If a chemical reaction regenerates the initial substance completely or partially from the products of the electrode reaction, such case is termed a chemical reaction parallel to the electrode reaction (see Eq. 5.6.1, case c). An example of this process is the catalytic reduction of hydroxylamine in the presence of the oxalate complex of TiIV, found by A. Blazek and J. Koryta. At the electrode, the complex of tetravalent titanium is reduced to the complex of trivalent titanium, which is oxidized by the hydroxylamine during diffusion from the electrode, regenerating tetravalent titanium, which is again reduced. The electrode process obeys the equations... [Pg.361]

Transposition of DNA, which is discussed in Chapter 27, Section D,4, may seem to be a rare and relatively unimportant event in our body cells. However, transposon DNA accounts for 35% or more of the human genome740 and apparently plays a major role in evolution. Like other transposons, the DNA sequences known as retrotransposons also move about within DNA. However, they use an indirect mechanism that involves synthesis of mRNA and reverse transcription.740 741 The reverse transcribed complementary DNA may be inserted back into the genome at new locations. The necessary chemical reactions parallel those involved in the replication of retroviruses (Fig. 28-23, 28-24). Retrotransposens, truncated retrotransposons, and related sequences constitute as much as 16% of the human genome.741... [Pg.1657]

Saveant JM, TaneUo E (1965) Potential-sweep chronoamperometry kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic currents). Electrochim Acta 10 905-920... [Pg.38]

Compounds are transformed into each other by chemical reactions that can be run under a variety of conditions from gas-phase reactions in refineries that produce basic chemicals on a large scale, through parallel transformations of sets of compounds on well-plates in combinatorial chemistry, all the way to the transformation of a substrate by an enzyme in a biochemical pathway. This wide range of reaction conditions underlines the complicated task of imderstanding and predicting chemical reaction events. [Pg.1]

The chemical reactions of the acid chlorides and anhydrides are so closely parallel that they are considered together. [Pg.364]

Step 4 of the thermal treatment process (see Fig. 2) involves desorption, pyrolysis, and char formation. Much Hterature exists on the pyrolysis of coal (qv) and on different pyrolysis models for coal. These models are useful starting points for describing pyrolysis in kilns. For example, the devolatilization of coal is frequently modeled as competing chemical reactions (24). Another approach for modeling devolatilization uses a set of independent, first-order parallel reactions represented by a Gaussian distribution of activation energies (25). [Pg.51]

Design possibilities for electrolytic cells are numerous, and the design chosen for a particular electrochemical process depends on factors such as the need to separate anode and cathode reactants or products, the concentrations of feedstocks, desired subsequent chemical reactions of electrolysis products, transport of electroactive species to electrode surfaces, and electrode materials and shapes. Cells may be arranged in series and/or parallel circuits. Some cell design possibiUties for electrolytic cells are... [Pg.70]

Determine the worst-case gas mixture combustion charac teris-tics, system pressure, and permissible pressure drop across the arrester, to help select the most appropriate element design. Not only does element design impac t pressure drop, but the rate of blockage due to particle impact, liquid condensation, and chemical reaction (such as monomer polymerization) can make some designs impractical even if in-service and out-of-seivdce arresters are provided in parallel. [Pg.2300]

The chemical reactions of XY can be conveniently classified as (a) halogenation reactions, (b) donor-acceptor interactions and (c) use as solvent systems. Reactions frequently parallel those of the parent halogens but with subtle and revealing differences. CIF is an effective fluorinating agent (p. 820) and will react with many metals and non-metals either at room temperature or above, converting them to fluorides and liberating chlorine, e.g. ... [Pg.826]

In the case of coupled heterogeneous catalytic reactions the form of the concentration curves of analytically determined gaseous or liquid components in the course of the reaction strongly depends on the relation between the rates of adsorption-desorption steps and the rates of surface chemical reactions. This is associated with the fact that even in the case of the simplest consecutive or parallel catalytic reaction the elementary steps (adsorption, surface reaction, and desorption) always constitute a system of both consecutive and parallel processes. If the slowest, i.e. ratedetermining steps, are surface reactions of adsorbed compounds, the concentration curves of the compounds in bulk phase will be qualitatively of the same form as the curves typical for noncatalytic consecutive (cf. Fig. 3b) or parallel reactions. However, anomalies in the course of bulk concentration curves may occur if the rate of one or more steps of adsorption-desorption character becomes comparable or even significantly lower then the rates of surface reactions, i.e. when surface and bulk concentration are not in equilibrium. [Pg.13]

The simplest case to be analyzed is the process in which the rate of one of the adsorption or desorption steps is so slow that it becomes itself rate determining in overall transformation. The composition of the reaction mixture in the course of the reaction is then not determined by kinetic, but by thermodynamic factors, i.e. by equilibria of the fast steps, surface chemical reactions, and the other adsorption and desorption processes. Concentration dependencies of several types of consecutive and parallel (branched) catalytic reactions 52, 53) were calculated, corresponding to schemes (Ila) and (lib), assuming that they are controlled by the rate of adsorption of either of the reactants A and X, desorption of any of the products B, C, and Y, or by simultaneous desorption of compounds B and C. [Pg.13]

To this point we have focused on reactions with rates that depend upon one concentration only. They may or may not be elementary reactions indeed, we have seen reactions that have a simple rate law but a complex mechanism. The form of the rate law, not the complexity of the mechanism, is the key issue for the analysis of the concentration-time curves. We turn now to the consideration of rate laws with additional complications. Most of them describe more complicated reactions and we can anticipate the finding that most real chemical reactions are composites, composed of two or more elementary reactions. Three classifications of composite reactions can be recognized (1) reversible or opposing reactions that attain an equilibrium (2) parallel reactions that produce either the same or different products from one or several reactants and (3) consecutive, multistep processes that involve intermediates. In this chapter we shall consider the first two. Chapter 4 treats the third. [Pg.46]

Some progress has been made in developing theoretical expressions for rj(6) for deactivation processes such as coking. Deactivation by loss of active sites can be modeled as a chemical reaction proceeding in parallel with the main reaction. It may be substantially independent of the main reaction. Site sintering, for example, will depend mainly on the reaction temperature. It is normally modeled as a second-order reaction ... [Pg.370]

The overall stability of the complexes listed in Table II tends to parallel, but exceed, that of their alkyl counterparts. Their chemical reactions may be classified as shown in the headings to Sections II,C,l-5, respectively, of which the Si—M cleavages (Section II,C,3) have been the most studied. [Pg.270]

In further work, the achievement of well-controlled reaction conditions in micro reactors is highlighted to provide chemical data yielding a highly parallel system of problem-solving fimctions [131]. This is used to approach a class of problems in computer science that is called NP-complete, for which algorithms are very difficult to solve. In summary, this mathematical approach is used to describe chemical reactions which are highly parallel systems as the parameter space and the related dependencies are virtually infinite (Figure 4.80). [Pg.511]

When the half-life time of reaction and the half-life time of micromixing in the absence of chemical reaction are of the same order or the former is less than the latter, the role of micromixing may become crucial. For instance, nitration or bromination of resorcinol, even when the ratio of moles of resorcinol to moles of bromine is high, can lead to predominantly disubstituted product contrary to the general belief. In such cases, in many respects, the theory of coupling between reaction and micromixing has parallels with the formalism of theory of mass transfer with chemical reaction (Bourne, 1983). [Pg.152]

If the reactant solid is porous, the reactant fluid would diffuse into it while reacting with it on its path diffusion and chemical reaction would occur in parallel over a diffuse zone. The analysis of such a reaction system is normally more complex as compared to reaction systems involving nonporous solids. Here also it is important to assess the relative importance of chemical reaction kinetics and of mass and heat transport. [Pg.333]

Ionisation processes in IMS occur in the gas phase through chemical reactions between sample molecules and a reservoir of reactive ions, i.e. the reactant ions. Formation of product ions in IMS bears resemblance to the chemistry in both APCI-MS and ECD technologies. Much yet needs to be learned about the kinetics of proton transfers and the structures of protonated gas-phase ions. Parallels have been drawn between IMS and CI-MS [277]. However, there are essential differences in ion identities between IMS, APCI-MS and CI-MS (see ref. [278]). The limited availability of IMS-MS (or IMMS) instruments during the last 35 years has impeded development of a comprehensive model for APCI. At the present time, the underlying basis of APCI and other ion-molecule events that occur in IMS remains vague. Rival techniques are MS and GC-MS. There are vast differences in the principles of ion separation in MS versus IMS. [Pg.416]

Case (c) A chemical reaction C(c) parallel to the electrode reaction has an effect only when E(c) is sufficiently fast. [Pg.356]

A similar procedure can be employed for subsequent and parallel chemical reactions and for higher-order reactions. [Pg.360]


See other pages where Chemical reactions parallel is mentioned: [Pg.2115]    [Pg.172]    [Pg.7]    [Pg.1291]    [Pg.7]    [Pg.1059]    [Pg.42]    [Pg.234]    [Pg.145]    [Pg.33]    [Pg.256]    [Pg.93]    [Pg.338]    [Pg.70]    [Pg.64]    [Pg.534]    [Pg.111]    [Pg.41]    [Pg.176]    [Pg.247]    [Pg.70]    [Pg.42]    [Pg.385]    [Pg.50]    [Pg.354]    [Pg.329]    [Pg.27]    [Pg.120]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Chemical kinetics series-parallel reactions

Disguised Chemical Selectivity in Competitive Parallel Reactions

First-order chemical kinetics parallel reaction

Parallel reactions

Reaction parallel reactions

© 2024 chempedia.info