Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron theory deviations from

A long time ago, Hong, Noolandi, and Street [16] investigated geminate electron-hole recombination in amorphous semiconductors. In their model they included the effects of tunneling, Coulomb interaction, and diffusion. Combination of tunneling and diffusion leads to an S(t) oc t 1/2 behavior. However, when the Coulomb interactions are included in the theory, deviations from the universal t /2 law are observed—for example, in the analysis of photoluminescence decay in amorphous Si H, as a function of temperature. [Pg.332]

Fig. 10.12. Convergence of the M0ller-Plesset perturbation theory (deviation from the exact value, a.u.) for the HF molecule as a function of the basis set used (cc-pVDZ and augmented cc-pVDZ) and assumed bond length, Re denotes the HF equilibrium distance (T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-Structure Theory , Wiley, Chichester, 2000, p. 780, Fig. 14.6. 2000, John Wiley and Sons. Reproduced with permission of John Wiley and Sons Ltd.). Fig. 10.12. Convergence of the M0ller-Plesset perturbation theory (deviation from the exact value, a.u.) for the HF molecule as a function of the basis set used (cc-pVDZ and augmented cc-pVDZ) and assumed bond length, Re denotes the HF equilibrium distance (T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-Structure Theory , Wiley, Chichester, 2000, p. 780, Fig. 14.6. 2000, John Wiley and Sons. Reproduced with permission of John Wiley and Sons Ltd.).
The voltammograms at the microhole-supported ITIES were analyzed using the Tomes criterion [34], which predicts ii3/4 — iii/4l = 56.4/n mV (where n is the number of electrons transferred and E- i and 1/4 refer to the three-quarter and one-quarter potentials, respectively) for a reversible ET reaction. An attempt was made to use the deviations from the reversible behavior to estimate kinetic parameters using the method previously developed for UMEs [21,27]. However, the shape of measured voltammograms was imperfect, and the slope of the semilogarithmic plot observed was much lower than expected from the theory. It was concluded that voltammetry at micro-ITIES is not suitable for ET kinetic measurements because of insufficient accuracy and repeatability [16]. Those experiments may have been affected by reactions involving the supporting electrolytes, ion transfers, and interfacial precipitation. It is also possible that the data was at variance with the Butler-Volmer model because the overall reaction rate was only weakly potential-dependent [35] and/or limited by the precursor complex formation at the interface [33b]. [Pg.397]

The GIAO-MP2/TZP calculated 13C NMR chemical shifts of the cyclopropylidene substituted dienyl cation 27 show for almost all carbon positions larger deviations from the experimental shifts than the other cations 22-26. The GIAO-MP2/TZP method overestimates the influence of cr-delocalization of the positive charge into the cyclopropane subunit on the chemical shifts. Electron correlation corrections for cyclopropylidenemethyl cations such as 27 and 28 are too large to be adequately described by the GIAO-MP2 perturbation theory method and higher hierarchies of approximations such as coupled cluster models are required to rectify the problem. [Pg.137]

In this contribution, we describe and illustrate the latest generalizations and developments[1]-[3] of a theory of recent formulation[4]-[6] for the study of chemical reactions in solution. This theory combines the powerful interpretive framework of Valence Bond (VB) theory [7] — so well known to chemists — with a dielectric continuum description of the solvent. The latter includes the quantization of the solvent electronic polarization[5, 6] and also accounts for nonequilibrium solvation effects. Compared to earlier, related efforts[4]-[6], [8]-[10], the theory [l]-[3] includes the boundary conditions on the solute cavity in a fashion related to that of Tomasi[ll] for equilibrium problems, and can be applied to reaction systems which require more than two VB states for their description, namely bimolecular Sjy2 reactions ],[8](b),[12],[13] X + RY XR + Y, acid ionizations[8](a),[14] HA +B —> A + HB+, and Menschutkin reactions[7](b), among other reactions. Compared to the various reaction field theories in use[ll],[15]-[21] (some of which are discussed in the present volume), the theory is distinguished by its quantization of the solvent electronic polarization (which in general leads to deviations from a Self-consistent limiting behavior), the inclusion of nonequilibrium solvation — so important for chemical reactions, and the VB perspective. Further historical perspective and discussion of connections to other work may be found in Ref.[l],... [Pg.259]

In Table 1.2, we have listed the valence cc-pVDZ electronic energies and AEs of N2 and HF at different levels of coupled-cluster theory. The energies are given as deviations from the FCI values. Comparing the different levels of theory, we note that the error is reduced by one order of magnitude at each level. In particular, at the CCSDT level, there is a residual error of the order of a few kJ/mol in the calculated energies and AEs, suggesting that the CCSDTQ model is usually needed to reproduce experimental measurements to within the quoted errors bars (often less than 1 kJ/mol). [Pg.6]

In this chapter, we shall use DFT to investigate the extent to which the oxide support alters the electronic structure of the deposited metal as a result of charge transfer at the metal-oxide interface. We will use CO chemisorption as a function of Pt film thickness to demonstrate how changes in the metal electronic structure can lead to chemisorption trends that deviate from expectations based on the current theory of molecular adsorption. [Pg.17]

After the first theoretical work of Tamm (1932), a series of theoretical papers on surface states were published (for example, Shockley, 1939 Goodwin, 1939 Heine, 1963). However, there has been no experimental evidence of the surface states for more than three decades. In 1966, Swanson and Grouser (1966, 1967) found a substantial deviation of the observed fie Id-emission spectroscopy on W(IOO) and Mo(lOO) from the theoretical prediction based on the Sommerfeld theory of metals. This experimental discovery has motivated a large amount of theoretical and subsequent experimental work in an attempt to explain its nature. After a few years, it became clear that the observed deviation from free-electron behavior of the W and Mo surfaces is an unambiguous exhibition of the surface states, which were predicted some three decades earlier. [Pg.101]

Computer simulation has also been used to calculate the external electric field effect on the geminate recombination in high-mobility systems [22]. For the mean free time x exceeding -0.05, the field dependence of the escape probability was found to significantly deviate from that obtained from the diffusion theory. Furthermore, the slope-to-intercept ratio of the field dependence of the escape probability was found to decrease with increasing x. Unlike in the diffusion-controlled geminate recombination, this ratio is no longer independent of the initial electron-ion separation [cf. Eq. (24)]. [Pg.271]

Below the plasma frequency at about 15 eV the only appreciable deviation from Drude theory occurs near 1.5 eV, where interband electronic transitions produce a peak in t" and associated structure in c with this exception, c for aluminum goes monotonically toward negative infinity and c" toward positive infinity as the energy approaches zero. [Pg.273]

Though there is fluid flow in the bulk of the electrolyte, it is found that there is a layer adjacent to the electrode in which the electrolyte is stationary, or stagnant. Thus the electron acceptors travel by convection from the bulk up to the stagnant layer and then cross the remaining boundary layer by diffusion. This transport by a convection-with-diffusion mechanism has not been taken into account so far. The equations for the time and space variation of concentration [i.e., Eq. (7.178)], for the transition time [Eq. (7.190)], and for the time variation of potential [Eq. (7.192)] have been derived for convection-free conditions, and they break down when convection becomes significant. The first approximation theory given above, therefore, deviates from experiment if the constant current is applied sufficiently long (times on the order of seconds) for convection to be important. [Pg.509]


See other pages where Electron theory deviations from is mentioned: [Pg.91]    [Pg.249]    [Pg.19]    [Pg.465]    [Pg.137]    [Pg.377]    [Pg.399]    [Pg.282]    [Pg.184]    [Pg.143]    [Pg.222]    [Pg.249]    [Pg.271]    [Pg.255]    [Pg.296]    [Pg.111]    [Pg.333]    [Pg.325]    [Pg.606]    [Pg.663]    [Pg.71]    [Pg.136]    [Pg.252]    [Pg.72]    [Pg.77]    [Pg.224]    [Pg.117]    [Pg.51]    [Pg.63]    [Pg.412]    [Pg.269]    [Pg.455]    [Pg.3]    [Pg.340]    [Pg.282]    [Pg.710]    [Pg.406]    [Pg.128]    [Pg.444]    [Pg.22]   
See also in sourсe #XX -- [ Pg.77 , Pg.78 ]




SEARCH



Deviation theory

© 2024 chempedia.info