Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrons photoelectron spectroscopy

Solvation of DNA bases/base pairs is of fundamental importance to biological processes as they take place in aqueous media. The effect of hydration on neutral bases or base pairs has been addressed using quantum chemical methods [106-112] as well as molecular dynamics (MD) simulations [113, 114], It is known that unlike the gas phase, dipole bound anions do not exist in condensed environments because such diffuse states are destabilized in the aqueous phase [115]. The drastic change in the nature of excess electron binding in the presence of water molecules with uracil has been observed experimentally by Bowen and co-workers [95b] using negative electron photoelectron spectroscopy (PES). They observed that even with a single water molecule the dipole bound state of uracil anion in gas phase... [Pg.594]

This technique is not a direct structural probe, but has been used as an experimental method to augment theoretical calculations on the bonding in cluster systems, including a number of alkyne-substituted complexes (389-391). The basis of the technique is that photons in the vacuum ultraviolet region of the spectrum, whose energy is about 10 eV, interact with molecules in the gas phase to cause either promotion of electrons from one bound state to another or their ejection as free electrons. Photoelectron spectroscopy is only concerned with processes that liberate electrons, either by direct ionization [Eq. (15)],... [Pg.192]

Mechanics, Classical Molecular Electronics Photoelectron Spectroscopy Protein Structure Quantum Chemistry Quantum Mechanics... [Pg.58]

Auger Electron Spectroscopy Molecular Electronics Photoelectron Spectroscopy Surface Chemistry Vacuum technology X-Ray Analysis X-Ray, Synchrotron Radiation and Neutron Diffraction... [Pg.599]

XPS X-ray photoelectron spectroscopy [131-137] Monoenergetic x-rays eject electrons from various atomic levels the electron energy spectrum is measured Surface composition, oxidation state... [Pg.315]

Electronic spectra of surfaces can give information about what species are present and their valence states. X-ray photoelectron spectroscopy (XPS) and its variant, ESC A, are commonly used. Figure VIII-11 shows the application to an A1 surface and Fig. XVIII-6, to the more complicated case of Mo supported on TiOi [37] Fig. XVIII-7 shows the detection of photochemically produced Br atoms on Pt(lll) [38]. Other spectroscopies that bear on the chemical state of adsorbed species include (see Table VIII-1) photoelectron spectroscopy (PES) [39-41], angle resolved PES or ARPES [42], and Auger electron spectroscopy (AES) [43-47]. Spectroscopic detection of adsorbed hydrogen is difficult, and... [Pg.690]

At a surface, not only can the atomic structure differ from the bulk, but electronic energy levels are present that do not exist in the bulk band structure. These are referred to as surface states . If the states are occupied, they can easily be measured with photoelectron spectroscopy (described in section A 1.7.5.1 and section Bl.25.2). If the states are unoccupied, a teclmique such as inverse photoemission or x-ray absorption is required [22, 23]. Also, note that STM has been used to measure surface states by monitoring the tunnelling current as a fiinction of the bias voltage [24] (see section BT20). This is sometimes called scamiing tuimelling spectroscopy (STS). [Pg.293]

Photoelectron spectroscopy provides a direct measure of the filled density of states of a solid. The kinetic energy distribution of the electrons that are emitted via the photoelectric effect when a sample is exposed to a monocluomatic ultraviolet (UV) or x-ray beam yields a photoelectron spectrum. Photoelectron spectroscopy not only provides the atomic composition, but also infonnation conceming the chemical enviromnent of the atoms in the near-surface region. Thus, it is probably the most popular and usefiil surface analysis teclmique. There are a number of fonus of photoelectron spectroscopy in conuuon use. [Pg.307]

X-ray photoelectron spectroscopy (XPS), also called electron spectroscopy for chemical analysis (ESCA), is described in section Bl.25,2.1. The most connnonly employed x-rays are the Mg Ka (1253.6 eV) and the A1 Ka (1486.6 eV) lines, which are produced from a standard x-ray tube. Peaks are seen in XPS spectra that correspond to the bound core-level electrons in the material. The intensity of each peak is proportional to the abundance of the emitting atoms in the near-surface region, while the precise binding energy of each peak depends on the chemical oxidation state and local enviromnent of the emitting atoms. The Perkin-Elmer XPS handbook contains sample spectra of each element and bindmg energies for certain compounds [58]. [Pg.308]

XPS is also often perfonned employing syncln-otron radiation as the excitation source [59]. This technique is sometimes called soft x-ray photoelectron spectroscopy (SXPS) to distinguish it from laboratory XPS. The use of syncluotron radiation has two major advantages (1) a much higher spectral resolution can be achieved and (2) the photon energy of the excitation can be adjusted which, in turn, allows for a particular electron kinetic energy to be selected. [Pg.308]

Powell C J, Jablonski A, Tilinin I S, Tanuma S and Penn D R 1999 Surface sensitivity of Auger-electron spectroscopy and x-ray photoelectron spectroscopy J. Eiectron Spec. Reiat. Phenom. 98-9 1... [Pg.318]

Powell C J 1994 Inelastic interactions of electrons with surfaces applications to Auger-electron spectroscopy and x-ray photoelectron spectroscopy Surf. Sc/. 299-300 34... [Pg.318]

ZEKE (zero kinetic energy) photoelectron spectroscopy has also been applied to negative ions [M]. In ZEKE work, the laser wavelengdi is swept tlirough photodetachment thresholds and only electrons with near-zero kinetic energy are... [Pg.804]

The observation of a bend progression is particularly significant. In photoelectron spectroscopy, just as in electronic absorption or emission spectroscopy, the extent of vibrational progressions is governed by Franck-Condon factors between the initial and final states, i.e. the transition between the anion vibrational level u" and neutral level u is given by... [Pg.879]

Vibrational spectroscopy provides detailed infonnation on both structure and dynamics of molecular species. Infrared (IR) and Raman spectroscopy are the most connnonly used methods, and will be covered in detail in this chapter. There exist other methods to obtain vibrational spectra, but those are somewhat more specialized and used less often. They are discussed in other chapters, and include inelastic neutron scattering (INS), helium atom scattering, electron energy loss spectroscopy (EELS), photoelectron spectroscopy, among others. [Pg.1149]

A number of surface-sensitive spectroscopies rely only in part on photons. On the one hand, there are teclmiques where the sample is excited by electromagnetic radiation but where other particles ejected from the sample are used for the characterization of the surface (photons in electrons, ions or neutral atoms or moieties out). These include photoelectron spectroscopies (both x-ray- and UV-based) [89, 9Q and 91], photon stimulated desorption [92], and others. At the other end, a number of methods are based on a particles-in/photons-out set-up. These include inverse photoemission and ion- and electron-stimulated fluorescence [93, M]- All tirese teclmiques are discussed elsewhere in tliis encyclopaedia. [Pg.1795]

X-ray photoelectron spectroscopy (XPS) is among the most frequently used surface chemical characterization teclmiques. Several excellent books on XPS are available [1, 2, 3, 4, 5, 6 and 7], XPS is based on the photoelectric effect an atom absorbs a photon of energy hv from an x-ray source next, a core or valence electron with bindmg energy is ejected with kinetic energy (figure Bl.25.1) ... [Pg.1852]

XPS X-ray photoelectron spectroscopy Absorption of a photon by an atom, followed by the ejection of a core or valence electron with a characteristic binding energy. Composition, oxidation state, dispersion... [Pg.1852]

UPS UV photoelectron spectroscopy Absorption of UV light by an atom, after which a valence electron Is ejected. Chemical bonding, work function... [Pg.1852]

Ultraviolet photoelectron spectroscopy (UPS) [2, 3 and 4, 6] differs from XPS in that UV light (He I, 21.2 eV He II, 40.8 eV) is used instead of x-rays. At these low excitmg energies, photoemission is limited to valence electrons. [Pg.1860]

Concelcao J, Laaksonen R T, Wang L S, Guo T, Nordlander P and Smalley R E 1995 Photoelectron spectroscopy of transition metal clusters correlation of valence electronic structure to reactivity Rhys. Rev. B 51 4668... [Pg.2403]

The adiabatic picture developed above, based on the BO approximation, is basic to our understanding of much of chemistry and molecular physics. For example, in spectroscopy the adiabatic picture is one of well-defined spectral bands, one for each electronic state. The smicture of each band is then due to the shape of the molecule and the nuclear motions allowed by the potential surface. This is in general what is seen in absorption and photoelectron spectroscopy. There are, however, occasions when the picture breaks down, and non-adiabatic effects must be included to give a faithful description of a molecular system [160-163]. [Pg.276]

In this formulation, the electron density is expressed as a linear combination of basis functions similar in mathematical form to HF orbitals. A determinant is then formed from these functions, called Kohn-Sham orbitals. It is the electron density from this determinant of orbitals that is used to compute the energy. This procedure is necessary because Fermion systems can only have electron densities that arise from an antisymmetric wave function. There has been some debate over the interpretation of Kohn-Sham orbitals. It is certain that they are not mathematically equivalent to either HF orbitals or natural orbitals from correlated calculations. However, Kohn-Sham orbitals do describe the behavior of electrons in a molecule, just as the other orbitals mentioned do. DFT orbital eigenvalues do not match the energies obtained from photoelectron spectroscopy experiments as well as HF orbital energies do. The questions still being debated are how to assign similarities and how to physically interpret the differences. [Pg.42]

Photoelectron spectroscopy involves the ejection of electrons from atoms or molecules following bombardment by monochromatic photons. The ejected electrons are called photoelectrons and were mentioned, in the context of the photoelectric effect, in Section 1.2. The effect was observed originally on surfaces of easily ionizable metals, such as the alkali metals. Bombardment of the surface with photons of tunable frequency does not produce any photoelectrons until the threshold frequency is reached (see Figure 1.2). At this frequency, v, the photon energy is just sufficient to overcome the work function

[Pg.289]

Figure 8.1 Processes occurring in (a) ultraviolet photoelectron spectroscopy (UPS), (b) X-ray photoelectron spectroscopy (XPS) and (c) Auger electron spectroscopy (AES)... Figure 8.1 Processes occurring in (a) ultraviolet photoelectron spectroscopy (UPS), (b) X-ray photoelectron spectroscopy (XPS) and (c) Auger electron spectroscopy (AES)...

See other pages where Electrons photoelectron spectroscopy is mentioned: [Pg.165]    [Pg.553]    [Pg.452]    [Pg.99]    [Pg.263]    [Pg.276]    [Pg.165]    [Pg.165]    [Pg.553]    [Pg.452]    [Pg.99]    [Pg.263]    [Pg.276]    [Pg.165]    [Pg.308]    [Pg.559]    [Pg.308]    [Pg.802]    [Pg.938]    [Pg.1124]    [Pg.1306]    [Pg.1385]    [Pg.1678]    [Pg.1807]    [Pg.1851]    [Pg.1868]    [Pg.2395]    [Pg.2397]    [Pg.2398]    [Pg.2725]    [Pg.2749]    [Pg.290]   
See also in sourсe #XX -- [ Pg.553 ]




SEARCH



Electron affinity photoelectron spectroscopy

Electron and nucleus dynamics tracked with pulse train in time-resolved photoelectron spectroscopy

Electronic characterization techniques photoelectron spectroscopy

Photoelectron Auger electron spectroscopy

Photoelectron spectroscopy electron emission from core

Photoelectron spectroscopy electron emission from valence

Photoelectron spectroscopy electronic shell structures

Photoelectron spectroscopy valence-shell electrons

Photoelectrons electrons

Surface electronic structure. Photoelectron spectroscopies

© 2024 chempedia.info