Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolytic methods purification

Titanium is relatively abundant in the earth s crust (0.6%). The main ores are ilmenite (FeTi03) and rutile, one of the several crystalline varieties of Ti02. It is not possible to obtain the metal by the common method of reduction with carbon because a very stable carbide is produced moreover, the metal is rather reactive toward oxygen and nitrogen at elevated temperatures. Because the metal has uniquely useful properties, however, expensive methods for its purification are justified. In addition to a proprietary electrolytic method, there is the older Kroll... [Pg.695]

Electrorefining. Electrolytic refining is a purification process in which an impure metal anode is dissolved electrochemicaHy in a solution of a salt of the metal to be refined, and then recovered as a pure cathodic deposit. Electrorefining is a more efficient purification process than other chemical methods because of its selectivity. In particular, for metals such as copper, silver, gold, and lead, which exhibit Htfle irreversibHity, the operating electrode potential is close to the reversible potential, and a sharp separation can be accompHshed, both at the anode where more noble metals do not dissolve and at the cathode where more active metals do not deposit. [Pg.175]

Electrolytic Reductions. Both nitro compounds and nitriles can be reduced electrochemically. One advantage of electrochemical reduction is the cleanness of the operation. Since there are a minimum of by-products, both waste disposal and purification of the product are greatiy simplified. However, unless very cheap electricity is available, these processes are generally too expensive to compete with the traditional chemical methods. [Pg.263]

Refining of Vanadium. In addition to the purification methods described above, vanadium can be purified by any of three methods iodide refining (van Arkel-deBoer process), electrolytic refining in a fused salt, and electrotransport. [Pg.384]

The propionamide can be dried over CaO. H2O and unreacted propionic acid were removed as their xylene azeotropes. It was vacuum dried. Material used as an electrolyte solvent (specific conductance less than 10 ohm cm" ) was obtained by fractional distn under reduced pressure, and stored over BaO or molecular sieves because it readily absorbs moisture from the atmosphere on prolonged storage. [Hoover Pure Appl Chem 37 581 I974 Recommended Methods for Purification of Solvents and Tests for Impurities, Coetzee Ed., Pergamon Press, 1982.]... [Pg.299]

Alcohol sulfates commonly have free alcohol and electrolytes as impurities. Other hydrophobic impurities can also be present. A method suitable for the purification of surfactants has been proposed by Rosen [120]. Consequently, commercial products have CMCs that deviate from the accepted reference values. This was demonstrated by Vijayendran [121] who studied several commercial sodium lauryl sulfates of high purity. The CMC was determined both by the conductimetric method and by the surface tension method. The values found were similar for both methods but while three samples gave CMC values of 7.9, 7.8, and 7.4 mM, close to the standard range of 8.0-8.2 mM, three other samples gave values of 4.1, 3.1, and 1.7 mM. The sample with a CMC of 7.9 mM was found to have a CMC of 8.0 mM with no detectable surface tension minima after purification and recrystallization. This procedure failed in all other cases. [Pg.250]

Polonium may be purified by various processes. Such purification methods include precipitation of polonium as sulfide and then decomposing the sulfide at elevated temperatures spontaneous decomposition of polonium onto a nickel or copper surface and electrolysis of nitric acid solutions of polonium-bismuth mixture. In electrolytic purification polonium is electrodeposited onto a platinum, gold, nickel, or carbon electrode. [Pg.731]

If we measure a residual current-potential curve by adding an appropriate supporting electrolyte to the purified solvent, we can detect and determine the electroactive impurities contained in the solution. In Fig. 10.2, the peroxide fonned after the purification of HMPA was detected by polarography. Polarography and voltammetry are also used to determine the applicable potential ranges and how they are influenced by impurities (see Fig. 10.1). These methods are the most straightforward for testing solvents to be used in electrochemical measurements. [Pg.293]

Inasmuch.as che usual method of purif ication of water by distillation is expensive, it was proposed that the impurities be removed by electrolysis. For this, water is placed in a cell, divided by means of porous diaphragms into three compartments, a large one in the middle and two small ones on either side. Each outer compartment contains an electrode, connected to terminals of DC current. When the current is switched on, the electrolyte substances which are dissolved in the water, decompose, the positively charged metallic ions (such.as Ca,... [Pg.722]

Polarographic methods of analysis have been applied to samples of foods containing saccharin (1+1-1+1+ ). In a procedure (1+1+) saccharin is extracted into organic solvents in an acidic medium. Further purification is achieved by column chromatography. The residue obtained is dissolved in 0.1 N NaOH and an aliquot is polarographed in a supporting electrolyte of 0.1 N HC1, 0.1 N KC1 and 0.1 Bu N Br. [Pg.507]

To determine Paraquat in agricultural run-off water Payne [194] separated the sediment from the sample (2L) by adding calcium chloride to aid flocculation, leaving the mixture overnight in a refrigerator for the sediment to settle. A 1L aliquot of the filtrate is extracted with dichloromethane. The dichloromethane extracts are concentrated by evaporation and the Trifluralin and Diphenamid are determined by direct injection, without further purification on to a glass column 1,8x6mm od packed with 10% DC 200 on Gas-Chrom Q and operated at 220°C with helium as carrier gas (lOOmL min-1) and a Coulson electrolytic-conductivity detector (N mode). Paraquat is determined in the filtrate by a modification of a conventional colorimetric method. Recoveries of the three substances were between 82 and 95% from water. [Pg.295]

However, it can be assumed for most electrochemical applications of ionic liquids, especially for electroplating, that suitable regeneration procedures can be found. This is first, because transfer of several regeneration options that have been established for aqueous solutions should be possible, allowing regeneration and reuse of ionic liquid based electrolytes. Secondly, for purification of fiesh ionic liquids on the laboratory scale a number of methods, such as distillation, recrystallization, extraction, membrane filtration, batch adsorption and semi-continuous adsorption in a chromatography column, have already been tested. The recovery of ionic liquids from rinse or washing water, e.g. by nanofiltration, can also be an important issue. [Pg.319]

Solvent Extraction. A modified, one-cycle PUREX process is used at Rocky Flats to recover plutonium from miscellaneous Pu-U residues (11). The process utilizes the extraction of uranium (VI) into tributyl phosphate (TBP), leaving plutonium (III) in the raffinate. The plutonium is then sent to ion exchange for purification. An extraction chromatography method is being studied as a possible substitute for the liquid-liquid extraction process (12) TBP is sorbed on an inert support so ion exchange column equipment can be used. Electrolytic valence adjustment could significantly improve this process. [Pg.376]

Electrochemical methods are sensitive to the extent that it is possible to detect a trace of electroactive species in electrolyte solutions. Because of this distinctive feature, electrochemical methods have been developed and utilized for analytical purposes. The detection method used is known as polarography. For the electrochemical study purification of the electrolyte solutions is therefore important. As for most aqueous and organic electrolyte solutions, there are various well-established techniques for purifying both solvents and electrolytes. In the case of room-temperature ionic liquids, it is especially important to purify the starting materials used for preparing the ionic liquids. [Pg.28]

Since electrode measurements involve low substrate concentrations, reactive impurities have to be held to a very low level. The physical data and purification methods for several organic solvents used in electrode measurements have been summarized (Mann, 1969). But even when careful procedures for solvent and electrolyte purification are employed, residual impurities can have profound effects upon the electrode response. For example, the voltam-metric observation of dications (Hammerich and Parker, 1973, 1976) and dianions (Jensen and Parker, 1974, 1975a) of aromatic hydrocarbons has only been achieved during the last ten years. The stability of radical anions (Peover, 1967) and radical cations (Peover and White, 1967 Phelps et al., 1967 Marcoux et al., 1967) of aromatic compounds was demonstrated by cyclic voltammetry much earlier but the corresponding doubly charged ions were believed to be inherently unstable because of facile reactions with the solvents and supporting electrolytes. However, the effective removal of impurities from the electrolyte solutions extended the life-times of the dianions and dications so that reversible cyclic voltammograms could be observed at ambient temperatures even at very low sweep rates. [Pg.147]


See other pages where Electrolytic methods purification is mentioned: [Pg.2357]    [Pg.417]    [Pg.908]    [Pg.2356]    [Pg.112]    [Pg.301]    [Pg.186]    [Pg.100]    [Pg.386]    [Pg.388]    [Pg.186]    [Pg.92]    [Pg.258]    [Pg.266]    [Pg.271]    [Pg.318]    [Pg.78]    [Pg.580]    [Pg.186]    [Pg.386]    [Pg.7]    [Pg.485]    [Pg.85]    [Pg.141]    [Pg.67]    [Pg.1265]    [Pg.294]    [Pg.292]    [Pg.55]    [Pg.314]    [Pg.350]    [Pg.166]    [Pg.191]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Electrolytic method

Electrolytic purification

Purification methods

© 2024 chempedia.info