Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolytes osmotic pressure

If we also assume the first equation as reversible, the participation of the electrolytic osmotic pressure would follow from simple reaction-kinetic considerations. [Pg.14]

Colhgative Properties and Dissociation of Electrolytes Osmotic Pressure... [Pg.542]

Those which have to do with the state of the dyestuff, ultramicroscopy, diffusion, dialjrsis, precipitation with electrolytes, osmotic pressure, and with the conductivity. [Pg.194]

These results show more clearly than Fq. (8.126)-of which they are special cases-the effect of charge and indifferent electrolyte concentration on the osmotic pressure of the solution. In terms of the determination of molecular weight of a polyelectrolyte by osmometry. ... [Pg.574]

What makes the latter items particularly important is the fact that the charge and electrolyte content of an unknown polymer may not be known hence it is important to design an osmotic pressure experiment correctly for such a system. It is often easier to add swamping amounts of electrolyte than to totally eliminate all traces of electrolyte. Under the former conditions a true molecular weight is obtained. Trouble arises only when the experimenter is indifferent toward indifferent electrolyte this sort of carelessness can be the source of much confusion. [Pg.574]

No experiments appear to have been made with such cells, although the equation has been verified with oxygen at different partial pressures in admixture with nitrogen, with platinum electrodes and hot solid glass as electrolyte (Haber and Moser). A similar case is that of two amalgams of a metal, of different concentrations, as electrodes, and a solution of a salt of the metal as electrolyte (G. Meyer, 1891). Here we must take the osmotic pressures of the metals in the amalgams, Pi, P2, and, for an 7i-valent metal ... [Pg.464]

Chapters 7 to 9 apply the thermodynamic relationships to mixtures, to phase equilibria, and to chemical equilibrium. In Chapter 7, both nonelectrolyte and electrolyte solutions are described, including the properties of ideal mixtures. The Debye-Hiickel theory is developed and applied to the electrolyte solutions. Thermal properties and osmotic pressure are also described. In Chapter 8, the principles of phase equilibria of pure substances and of mixtures are presented. The phase rule, Clapeyron equation, and phase diagrams are used extensively in the description of representative systems. Chapter 9 uses thermodynamics to describe chemical equilibrium. The equilibrium constant and its relationship to pressure, temperature, and activity is developed, as are the basic equations that apply to electrochemical cells. Examples are given that demonstrate the use of thermodynamics in predicting equilibrium conditions and cell voltages. [Pg.686]

It remains to evaluate the quantity c — Cs. Since an explicit general solution is not to be had, we resort to the consideration of special cases. First, suppose that the external electrolyte concentration Cs is very small compared with the concentration ic /z- of the ge-gen ions belonging to the polymer and occurring in the gel. Then the second term in the left-hand member of Eq. (45) may be neglected in comparison with the first. Furthermore, the very large ionic osmotic pressures developed in such cases will cause V2m to be very small, thus justifying adoption of the dilute solution approximations (see, for example, Eq. 40) for the right-hand member. The equilibrium relation reduces in this case to... [Pg.587]

In the opposite case to that considered above, Cs >ic2 and the difference in concentration Cs of the mobile electrolyte inside and outside the gel may be comparable in magnitude to the concentration C2/ of counter-anions. Hence the ion osmotic pressure is greatly reduced. Calculation of Cs — Cs for this case (see Appendix B) gives for the osmotic pressure due to the mobile ions... [Pg.589]

If 0.6 N lithium bromide is added to the solution of the polyelectrolyte and also to the solvent on the opposite side of the osmometer membrane, the lowermost set of points in Fig. 145 (lower and left scales) is observed. The anion concentration inside and outside the coil is now so similar that there is little tendency for the bromide ions belonging to the polymer to migrate outside the coil. Hence the osmotic pressure behaves normally in the sense that each poly electrolyte molecule contributes essentially only one osmotic unit. The izjc intercept is lower than that for the parent poly-(vinylpyridine) owing to the increase in molecular weight through addition of a molecule of butyl bromide to each unit. [Pg.634]

Numerous measurements of the conductivity of aqueous solutions performed by the school of Friedrich Kohhansch (1840-1910) and the investigations of Jacobns van t Hoff (1852-1911 Nobel prize, 1901) on the osmotic pressure of solutions led the young Swedish physicist Svante August Arrhenius (1859-1927 Nobel prize, 1903) to establish in 1884 in his thesis the main ideas of his famous theory of electrolytic dissociation of acids, alkalis, and salts in solutions. Despite the sceptitism of some chemists, this theory was generally accepted toward the end of the centnry. [Pg.696]

Fluids can be classified further according to their tonicity. Isotonic solutions (i.e., normal saline or 0.9% sodium chloride [NaCl]) have a tonicity equal to that of the ICF (approximately 310 mEq/L or 310 mmol/L) and do not shift the distribution of water between the ECF and the ICF. Because hypertonic solutions (i.e., hypertonic saline or 3% NaCl) have greater tonicity than the ICF (greater than 376 mEq/L or 376 mmol/L), they draw water from the ICF into the ECF. In contrast, hypotonic solutions (i.e., 0.45% NaCl) have less tonicity than the ICF (less than 250 mEq/L or 250 mmol/L) leading to an osmotic pressure gradient that pulls water from the ECF into the ICF. The tonicity, electrolyte content, and glucose content of selected fluids are shown in Table 24—3. [Pg.405]

The activity coefficient of the solvent remains close to unity up to quite high electrolyte concentrations e.g. the activity coefficient for water in an aqueous solution of 2 m KC1 at 25°C equals y0x = 1.004, while the value for potassium chloride in this solution is y tX = 0.614, indicating a quite large deviation from the ideal behaviour. Thus, the activity coefficient of the solvent is not a suitable characteristic of the real behaviour of solutions of electrolytes. If the deviation from ideal behaviour is to be expressed in terms of quantities connected with the solvent, then the osmotic coefficient is employed. The osmotic pressure of the system is denoted as jz and the hypothetical osmotic pressure of a solution with the same composition that would behave ideally as jt. The equations for the osmotic pressures jt and jt are obtained from the equilibrium condition of the pure solvent and of the solution. Under equilibrium conditions the chemical potential of the pure solvent, which is equal to the standard chemical potential at the pressure p, is equal to the chemical potential of the solvent in the solution under the osmotic pressure jt,... [Pg.19]

Van t Hoff introduced the correction factor i for electrolyte solutions the measured quantity (e.g. the osmotic pressure, Jt) must be divided by this factor to obtain agreement with the theory of dilute solutions of nonelectrolytes (jt/i = RTc). For the dilute solutions of some electrolytes (now called strong), this factor approaches small integers. Thus, for a dilute sodium chloride solution with concentration c, an osmotic pressure of 2RTc was always measured, which could readily be explained by the fact that the solution, in fact, actually contains twice the number of species corresponding to concentration c calculated in the usual manner from the weighed amount of substance dissolved in the solution. Small deviations from integral numbers were attributed to experimental errors (they are now attributed to the effect of the activity coefficient). [Pg.21]

The osmotic pressure of an electrolyte solution jt can be considered as the ideal osmotic pressure jt decreased by the pressure jrel resulting from electric cohesion between ions. The work connected with a change in the concentration of the solution is n dV = jt dV — jrel dV. The electric part of this work is then JteldV = dWcl, and thus jzc] = (dWei/dV)T,n. The osmotic coefficient 0 is given by the ratio jt/jt, from which it follows that... [Pg.49]

Let us assume a solution of a non-electrolyte in water, separated from the pure solvent—water—by a semiper-meable membrane forming a piston (Fig. 8). Water enters the solution through the membrane and raises the piston, i.e., the solution can do work or possesses potential energy owing to its osmotic pressure. If the membrane is removed, the osmotic pressure causes diffusion until (if no other forces are active) the solute is uniformly distributed through the solvent. Osmotic pressure is, therefore, a factor tending to bring about uniform concentration. [Pg.36]

All eukaryote cells are faced with differences in intracellular solute composition when compared with the external environment. Many eukaryotes live in seawater, and have cells which are either bathed in seawater directly, or have an extracellular body fluid which is broadly similar to seawater [3]. Osmoregulation and body fluid composition in animals has been extensively reviewed (e.g. [3,15-21]), and reveals that many marine invertebrates have body fluids that are iso-osmotic with seawater, but may regulate some electrolytes (e.g. SO2-) at lower levels than seawater. Most vertebrates have a body fluid osmotic pressure (about 320mOsmkg 1), which is about one-third of that in seawater (lOOOmOsmkg ), and also regulate some electrolytes in body fluids at... [Pg.338]

This latter expression allows us to compute all the excess properties of dilute electrolytic solutions for instance, the excess osmotic pressure is determined by Eq. (138). The most remarkable result is of course that all these thermodynamic properties are non-anaiytic functions of the concentration ... [Pg.194]

Moreover the ionisation of the electrolyte groups adds to a number of unusual effects in the presence of small amounts of added salt. The intensity of light scattering decreases due to the ordering of the molecules in solution and the Osmotic pressure and ultracentrifugation behaviour are determined predominantly by the total charge on the molecule. [Pg.139]

Since osmotic pressure depends upon the number of particles of solute(s) in solution, the osmotic pressure of an electrolyte is directly proportional to the degree (or extent) of dissociation. The dissociation factor, symbolized by the letter i, can be calculated by dividing the total number of particles (which include undissociated molecules and ions) in a solution by the number of particles before dissociation, i.e.,... [Pg.159]

Electrolytes regulate body water volumes by establishing osmotic pressure which is proportional to the total number of particles in solution. The osmotic pressure of a solution is expressed in units of milliosmoles (mOsm). Osmolar concentrations reflects the number of particles (molecules as well as ions) of total solutes per volume of solution, which in turn determines the osmotic pressure of the solution. [Pg.215]

Volumes of the intracellular and extracellular body fluid compartments are kept constant by the osmotic pressure, which is created by the concentration of dissolved ions (electrolytes) in each compartment. The normal osmotic concentration is in the range of 280-310 mOsm/L. [Pg.388]


See other pages where Electrolytes osmotic pressure is mentioned: [Pg.133]    [Pg.115]    [Pg.15]    [Pg.24]    [Pg.3773]    [Pg.745]    [Pg.133]    [Pg.115]    [Pg.15]    [Pg.24]    [Pg.3773]    [Pg.745]    [Pg.180]    [Pg.413]    [Pg.575]    [Pg.380]    [Pg.232]    [Pg.684]    [Pg.287]    [Pg.325]    [Pg.381]    [Pg.13]    [Pg.631]    [Pg.633]    [Pg.515]    [Pg.515]    [Pg.55]    [Pg.18]    [Pg.57]    [Pg.164]    [Pg.71]    [Pg.179]    [Pg.241]    [Pg.19]    [Pg.23]   
See also in sourсe #XX -- [ Pg.511 , Pg.512 ]




SEARCH



Osmotic electrolytes

Osmotic pressure

Osmotic pressure, electrolytic

© 2024 chempedia.info