Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Osmotic electrolyte

Na/K Osmotic/electrolytic balance 4xl09 years increasing... [Pg.388]

The solutions to this approximation are obtained numerically. Fast Fourier transfonn methods and a refomuilation of the FINC (and other integral equation approximations) in tenns of the screened Coulomb potential by Allnatt [M are especially useful in the numerical solution. Figure A2.3.12 compares the osmotic coefficient of a 1-1 RPM electrolyte at 25°C with each of the available Monte Carlo calculations of Card and Valleau [ ]. [Pg.495]

Figure A2.3.12 The osmotic coefficient of a 1-1 RPM electrolyte compared with the Monte Carlo results of... Figure A2.3.12 The osmotic coefficient of a 1-1 RPM electrolyte compared with the Monte Carlo results of...
Figure A2.3.14 Osmotic coefficients for 1-1, 2-1 and 3-1 RPM electrolytes according to the MS and HNC approximations. Figure A2.3.14 Osmotic coefficients for 1-1, 2-1 and 3-1 RPM electrolytes according to the MS and HNC approximations.
The osmotic coefficients from the HNC approximation were calculated from the virial and compressibility equations the discrepancy between ([ly and ((ij is a measure of the accuracy of the approximation. The osmotic coefficients calculated via the energy equation in the MS approximation are comparable in accuracy to the HNC approximation for low valence electrolytes. Figure A2.3.15 shows deviations from the Debye-Htickel limiting law for the energy and osmotic coefficient of a 2-2 RPM electrolyte according to several theories. [Pg.497]

Figure A2.3.16. Theoretical HNC osmotic coefTicients for a range of ion size parameters in the primitive model compared with experimental data for the osmotic coefficients of several 1-1 electrolytes at 25°C. The curves are labelled according to the assumed value of a+- = r+ + r-... Figure A2.3.16. Theoretical HNC osmotic coefTicients for a range of ion size parameters in the primitive model compared with experimental data for the osmotic coefficients of several 1-1 electrolytes at 25°C. The curves are labelled according to the assumed value of a+- = r+ + r-...
Figure A2.3.17 Theoretical (HNC) calculations of the osmotic coefficients for the square well model of an electrolyte compared with experimental data for aqueous solutions at 25°C. The parameters for this model are a = r (Pauling)+ r (Pauling), d = d = 0 and d as indicated in the figure. Figure A2.3.17 Theoretical (HNC) calculations of the osmotic coefficients for the square well model of an electrolyte compared with experimental data for aqueous solutions at 25°C. The parameters for this model are a = r (Pauling)+ r (Pauling), d = d = 0 and d as indicated in the figure.
In principle, simulation teclmiques can be used, and Monte Carlo simulations of the primitive model of electrolyte solutions have appeared since the 1960s. Results for the osmotic coefficients are given for comparison in table A2.4.4 together with results from the MSA, PY and HNC approaches. The primitive model is clearly deficient for values of r. close to the closest distance of approach of the ions. Many years ago, Gurney [H] noted that when two ions are close enough together for their solvation sheaths to overlap, some solvent molecules become freed from ionic attraction and are effectively returned to the bulk [12]. [Pg.583]

We shall be interested in determining the effect of electrolytes of low molecular weight on the osmotic properties of these polymer solutions. To further simplify the discussion, we shall not attempt to formulate the relationships of this section in general terms for electrolytes of different charge types-2 l, 2 2, 3 1, 3 2, and so on-but shall consider the added electrolyte to be of the 1 1 type. We also assume that these electrolytes have no effect on the state of charge of the polymer itself that is, for a polymer such as, say, poly (vinyl pyridine) in aqueous HCl or NaOH, the state of charge would depend on the pH through the water equilibrium and the reaction... [Pg.569]

These results show more clearly than Fq. (8.126)-of which they are special cases-the effect of charge and indifferent electrolyte concentration on the osmotic pressure of the solution. In terms of the determination of molecular weight of a polyelectrolyte by osmometry. ... [Pg.574]

What makes the latter items particularly important is the fact that the charge and electrolyte content of an unknown polymer may not be known hence it is important to design an osmotic pressure experiment correctly for such a system. It is often easier to add swamping amounts of electrolyte than to totally eliminate all traces of electrolyte. Under the former conditions a true molecular weight is obtained. Trouble arises only when the experimenter is indifferent toward indifferent electrolyte this sort of carelessness can be the source of much confusion. [Pg.574]

When an ionic solution contains neutral molecules, their presence may be inferred from the osmotic and thermodynamic properties of the solution. In addition there are two important effects that disclose the presence of neutral molecules (1) in many cases the absorption spectrum for visible or ultraviolet light is different for a neutral molecule in solution and for the ions into which it dissociates (2) historically, it has been mainly the electrical conductivity of solutions that has been studied to elucidate the relation between weak and strong electrolytes. For each ionic solution the conductivity problem may be stated as follows in this solution is it true that at any moment every ion responds to the applied field as a free ion, or must we say that a certain fraction of the solute fails to respond to the field as free ions, either because it consists of neutral undissociated molecules, or for some other reason ... [Pg.38]

It is important to realise that whilst complete dissociation occurs with strong electrolytes in aqueous solution, this does not mean that the effective concentrations of the ions are identical with their molar concentrations in any solution of the electrolyte if this were the case the variation of the osmotic properties of the solution with dilution could not be accounted for. The variation of colligative, e.g. osmotic, properties with dilution is ascribed to changes in the activity of the ions these are dependent upon the electrical forces between the ions. Expressions for the variations of the activity or of related quantities, applicable to dilute solutions, have also been deduced by the Debye-Hiickel theory. Further consideration of the concept of activity follows in Section 2.5. [Pg.23]

No experiments appear to have been made with such cells, although the equation has been verified with oxygen at different partial pressures in admixture with nitrogen, with platinum electrodes and hot solid glass as electrolyte (Haber and Moser). A similar case is that of two amalgams of a metal, of different concentrations, as electrodes, and a solution of a salt of the metal as electrolyte (G. Meyer, 1891). Here we must take the osmotic pressures of the metals in the amalgams, Pi, P2, and, for an 7i-valent metal ... [Pg.464]

Equation (7.45) is a limiting law expression for 7 , the activity coefficient of the solute. Debye-Htickel theory can also be used to obtain limiting-law expressions for the activity a of the solvent. This is usually done by expressing a in terms of the practical osmotic coefficient

electrolyte solute, it is defined in a general way as... [Pg.345]

Chapters 7 to 9 apply the thermodynamic relationships to mixtures, to phase equilibria, and to chemical equilibrium. In Chapter 7, both nonelectrolyte and electrolyte solutions are described, including the properties of ideal mixtures. The Debye-Hiickel theory is developed and applied to the electrolyte solutions. Thermal properties and osmotic pressure are also described. In Chapter 8, the principles of phase equilibria of pure substances and of mixtures are presented. The phase rule, Clapeyron equation, and phase diagrams are used extensively in the description of representative systems. Chapter 9 uses thermodynamics to describe chemical equilibrium. The equilibrium constant and its relationship to pressure, temperature, and activity is developed, as are the basic equations that apply to electrochemical cells. Examples are given that demonstrate the use of thermodynamics in predicting equilibrium conditions and cell voltages. [Pg.686]

The osmotic diuretics urea and mannitol are administered intravenously (IV), whereas glycerin and isosorbide are administered orally Administration by the IV route may result in a rapid fluid and electrolyte imbalance, especially when these drugs are administered before surgery with the patient in a fasting state ... [Pg.447]

The osmotic diuretics are contraindicated in patients with known hypersensitivity to the drags, electrolyte imbalances, severe dehydration, or anuria and those who experience progressive renal damage after instituting therapy (mannitol). Mannitol is contraindicated in patients with active intracranial bleeding (except during craniotomy). [Pg.448]

It remains to evaluate the quantity c — Cs. Since an explicit general solution is not to be had, we resort to the consideration of special cases. First, suppose that the external electrolyte concentration Cs is very small compared with the concentration ic /z- of the ge-gen ions belonging to the polymer and occurring in the gel. Then the second term in the left-hand member of Eq. (45) may be neglected in comparison with the first. Furthermore, the very large ionic osmotic pressures developed in such cases will cause V2m to be very small, thus justifying adoption of the dilute solution approximations (see, for example, Eq. 40) for the right-hand member. The equilibrium relation reduces in this case to... [Pg.587]

In the opposite case to that considered above, Cs >ic2 and the difference in concentration Cs of the mobile electrolyte inside and outside the gel may be comparable in magnitude to the concentration C2/ of counter-anions. Hence the ion osmotic pressure is greatly reduced. Calculation of Cs — Cs for this case (see Appendix B) gives for the osmotic pressure due to the mobile ions... [Pg.589]


See other pages where Osmotic electrolyte is mentioned: [Pg.231]    [Pg.475]    [Pg.231]    [Pg.475]    [Pg.180]    [Pg.413]    [Pg.512]    [Pg.575]    [Pg.202]    [Pg.380]    [Pg.536]    [Pg.148]    [Pg.34]    [Pg.165]    [Pg.232]    [Pg.684]    [Pg.684]    [Pg.287]    [Pg.325]    [Pg.660]    [Pg.663]    [Pg.448]    [Pg.364]    [Pg.368]    [Pg.381]    [Pg.13]    [Pg.166]    [Pg.175]    [Pg.631]    [Pg.632]    [Pg.633]   
See also in sourсe #XX -- [ Pg.475 ]




SEARCH



Electro-osmotic drag Polymer electrolyte membrane

Electrolyte osmotic coefficient

Electrolyte solutions osmotic coefficients

Electrolytes osmotic pressure

Electrolytes, solubility osmotic coefficient

Osmotic Pressure of Electrolyte Solutions

Osmotic coefficient of an electrolyte

Osmotic pressure electrolyte solutions

Osmotic pressure, electrolytic

© 2024 chempedia.info