Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode kinetics cathodic reaction

Inoue T, Seki N, Eguchi K, Arai H (1990) Low-temperature operation of solid electrolyte oxygtai sensors using perovskite-type oxide electrodes and cathodic reaction kinetics. J Electrochem Soc 137(8) 2523-2527... [Pg.172]

It is not appropriate here to consider the kinetics of the various electrode reactions, which in the case of the oxygenated NaCl solution will depend upon the potentials of the electrodes, the pH of the solution, activity of chloride ions, etc. The significant points to note are that (a) an anode or cathode can support more than one electrode process and b) the sum of the rates of the partial cathodic reactions must equal the sum of the rates of the partial anodic reactions. Since there are four exchange processes (equations 1.39-1.42) there will be eight partial reactions, but if the reverse reactions are regarded as occurring at an insignificant rate then... [Pg.81]

Over the years the original Evans diagrams have been modified by various workers who have replaced the linear E-I curves by curves that provide a more fundamental representation of the electrode kinetics of the anodic and cathodic processes constituting a corrosion reaction (see Fig. 1.26). This has been possible partly by the application of electrochemical theory and partly by the development of newer experimental techniques. Thus the cathodic curve is plotted so that it shows whether activation-controlled charge transfer (equation 1.70) or mass transfer (equation 1.74) is rate determining. In addition, the potentiostat (see Section 20.2) has provided... [Pg.94]

When corrosion occurs, if the cathodic reactant is in plentiful supply, it can be shown both theoretically and practically that the cathodic kinetics are semi-logarithmic, as shown in Fig. 10.4. The rate of the cathodic reaction is governed by the rate at which electrical charge can be transferred at the metal surface. Such a process responds to changes in electrode potential giving rise to the semi-logarithmic behaviour. [Pg.113]

The thermodynamic and electrode-kinetic principles of cathodic protection have been discussed at some length in Section 10.1. It has been shown that, if electrons are supplied to the metal/electrolyte solution interface, the rate of the cathodic reaction is increased whilst the rate of the anodic reaction is decreased. Thus, corrosion is reduced. Concomitantly, the electrode potential of the metal becomes more negative. Corrosion may be prevented entirely if the rate of electron supply is such that the potential of the metal is lowered to the value where it is found that anodic dissolution does not occur. This may not necessarily be the potential at which dissolution is thermodynamically impossible. [Pg.135]

From a kinetic point of view a describes the influence of a change of the electrode potential on the energy of activation for the charge transfer reaction which in turn influences the partial current density. The transfer coefficients % for the anodic charge transfer reaction and for the cathodic reaction add up according to... [Pg.265]

For thermodynamic reasons, an electrochemical reaction can occur only within a dehnite region of potentials a cathodic reaction at electrode potentials more negative, an anodic reaction at potentials more positive than the equilibrium potential of that reaction. This condition only implies a possibility that the electrode reaction will occur in the corresponding region of potentials it provides no indication of whether the reaction will actually occur, and if so, what its rate will be. The answers are provided not by thermodynamics but by electrochemical kinetics. [Pg.79]

Polarization in the cathodic direction accelerates the cathodic reaction and is called cathodic polarization polarization in the anodic direction accelerates the anodic reaction and is called anodic polarization. In Fig. 7-4 the polarization curve is cathodic at potentials more negative and is anodic at potentials more positive than the equilibrium potential E. In electrode reaction kinetics the magnitude of polarization (the potential change in polarization) is called the overvoltage or overpotential and conventionally expressed by symbol ii, which is negative in cathodic polarization and positive in anodic polarization. [Pg.219]

The second-order reaction with adsorption of the ligand (2.210) signifies the most complex cathodic stripping mechanism, which combines the voltammetric features of the reactions (2.205) and (2.208) [137]. For the electrochemically reversible case, the effect of the ligand concentration and its adsorption strength is identical as for reaction (2.205) and (2.208), respectively. A representative theoretical voltammo-gram of a quasireversible electrode reaction is shown in Fig. 2.86d. The dimensionless response is controlled by the electrode kinetic parameter m, the adsorption... [Pg.127]

Both batteries and fuei cells utilize controlled chemical reactions in which the desired process occurs electrochemically and all other reactions including corrosion are hopefully absent or severely kinetically suppressed. This desired selectivity demands careful selection of the chemical components including their morphology and structure. Nanosize is not necessarily good, and in present commercial lithium batteries, particle sizes are intentionally large. All batteries and fuel cells contain an electropositive electrode (the anode or fuel) and an electronegative electrode (the cathode or oxidant) between which resides the electrolyte. To ensure that the anode and cathode do not contact each other and short out the cell, a separator is placed between the two electrodes. Most of these critical components are discussed in this thematic issue. [Pg.4]

In addition to the possibility of multiple transport paths, our understanding of reaction mechanisms on LSM is further complicated (as with platinum) by pronounced nonstationary behavior in the form of hysteresis of inductive effects. These effects are sometimes manifest as the often-mentioned (but little-documented) phenomenon of burn-in , a term used in development circles to describe the initial improvement (or sometimes decline) of the cathode kinetics after a few hours or days following initial polarization (after which the performance becomes relatively stable). As recently reported by McIntosh et al., this effect can improve the measured impedance of a composite LSMA SZ cathode by a factor of 5 7relative to an unpolarized cathode at OCV." ° Such an effect is important to understand not only because it may lead to insight about the underlying electrode kinetics (and ways to improve them), but also because it challenges the metrics often used to assess and compare relative cell performance. [Pg.584]

Wendt, H. and Plzak, V. (1990) Electrode kinetics and electrocatalysis of hydrogen and oxygen electrode reactions. 2. Electrocatalysis and electrocatalysts for cathodic evolution and anodic oxidation of hydrogen, in Electrochemical Hydrogen Technologies (ed. H. Wendt), Elsevier, Amsterdam, Chapter 1. 2. [Pg.268]

Cells can be made in which the cathode-anode distance is only 10-3 cm. Such cells have the advantage that the total impurity present is veiy small and may not be enough to cover more than 0.1% of the electrode surface if they were all adsorbed. Thus, suppose the impurity concentration were 10-6 mol liter-1 or 10-9 mol cc 1 or 10 12 mol in the cell Because an electrode surface can cany (at most) about 10-9 mol cm-2, the maximum fraction of the surface covered with impurity molecules is 0.1%. Does work with thin-layer cells eliminate the inpurity problem in electrode kinetics It improves it. However, active sites on catalysts may occupy less than 0.1% of an electrode and preferentially attract newly arriving impurities, so that even thin-layer cells may not entirely avoid the impurity difficulty,32 particularly if the electrode reaction concerned (as with most) involves adsorbed intermediates and electrocatalysis. [Pg.386]

At a high cathodic potential (region II), a sharp transition is observed at the potential referred to as ET. The authors demonstrate that the sudden increase of the electrode kinetics could not be attributed to the sole electrochemical reduction of the electrode material, nor to the electrolyte reduction. They conclude that after the transition, the main electrode process is still an oxygen electrode reaction with a major change of mechanism, leading to the onset of an important electrocatalytic effect. This assertion is sustained by the analysis of ... [Pg.108]

In this chapter, we will review the fundamental models that we developed to predict cathode carbon-support corrosion induced by local H2 starvation and start-stop in a PEM fuel cell, and show how we used them to understand experiments and provide guidelines for developing strategies to mitigate carbon corrosion. We will discuss the kinetic model,12 coupled kinetic and transport model,14 and pseudo-capacitance model15 sequentially in the three sections that follow. Given the measured electrode kinetics for the electrochemical reactions appearing in Fig. 1, we will describe a model, compare the model results with available experimental data, and then present... [Pg.48]

If the electrode kinetic expression is simplified by neglecting the reverse reaction, the model equation for a cathodic reaction only can be rewritten as... [Pg.289]

The kinetics is called irreversible in electrochemistry when the charge-transfer step is very sluggish, i.e., the standard rate constant (ks) and - exchange current density (j0) are very small. In this case the anodic and cathodic reactions are never simultaneously significant. In order to observe any current, the charge-transfer reaction has to be strongly activated either in cathodic or in anodic direction by application of -> overpotential. When the electrode process is neither very facile nor very sluggish we speak of quasireversible behavior. [Pg.373]

An example of the size of the impurity effects that may arise is shown in Fig. 1, which gives the electrode kinetics for the ferro-ferricyanide reaction on three different zinc oxide single crystals of varying conductivity. Each of the crystals was in excess of 99.999% pure. As can be seen, each crystal gives a linear Tafel plot under cathodic bias. However, the exchange currents, i.e, the extrapolations back to the reversible potential (+. 19 volts), differ by a factor of about 1000 and... [Pg.207]

Thus, the cathode reaction rate is proportional to the ionic current. Kinetic information about the gas electrode reactions can then be obtained by monitoring the current during a PEVD process. [Pg.131]

The most reliable data are from studies of hydrogen evolution on mercury cathodes in acid solutions. This reaction has been studied most extensively over the years. The use of a renewable surface (a dropping mercury electrode, in which a new surface is formed every few seconds), our ability to purify the electrode by distillation, the long range of overpotentials over which the Tafel equation is applicable and the relatively simple mechanism of the reaction in this system all combine to give high credence to the conclusion that p = 0.5. This value has been used in almost all mechanistic studies in electrode kinetics and has led to consistent interpretations of the experimental behavior. It... [Pg.386]


See other pages where Electrode kinetics cathodic reaction is mentioned: [Pg.533]    [Pg.213]    [Pg.213]    [Pg.262]    [Pg.274]    [Pg.441]    [Pg.673]    [Pg.315]    [Pg.121]    [Pg.10]    [Pg.555]    [Pg.576]    [Pg.598]    [Pg.436]    [Pg.72]    [Pg.185]    [Pg.876]    [Pg.82]    [Pg.31]    [Pg.55]    [Pg.13]    [Pg.339]    [Pg.175]    [Pg.479]    [Pg.488]    [Pg.611]    [Pg.182]    [Pg.260]    [Pg.261]    [Pg.324]    [Pg.326]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Cathode kinetics

Cathode reaction

Cathodic electrode

Cathodic reactions

Electrode cathode

Electrode kinetics

Electrode reactions

Kinetics, electrode reaction

© 2024 chempedia.info