Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical techniques, interface

An electric current flowing through an ITIFS splits into nonfaradaic (charging or capacity) and faradic current contributions. The latter contribution comprises the effects of both the transport of reactants to or from the interface, and the interfacial charge transfer, the rate of which is a function of the interfacial potential difference. By applying a transient electrochemical technique, these two effects can be resolved... [Pg.616]

NB/W interface, which were calculated from the extraction data using an extra thermodynamic assumption. Afterward, a newly developed electrochemical technique (so-called ion-transfer voltammetry) with a polarizable O/W interface was employed to determine... [Pg.57]

Electrochemical processes are always heterogeneous and confined to the electrochemical interface between a solid electrode and a liquid electrolyte (in this chapter always aqueous). The knowledge of the actual composition of the electrode surface, of its electronic and geometric structure, is of particular importance when interpreting electrochemical experiments. This information cannot be obtained by classical electrochemical techniques. Monitoring the surface composition before, during and after electrochemical reactions will support the mechanism derived for the process. This is of course true for any surface sensitive spectroscopy. Each technique, however, has its own spectrum of information and only a combination of different surface spectroscopies and electrochemical experiments will come up with an almost complete picture of the electrochemical interface. XPS is just one of these techniques. [Pg.77]

The traditional electrochemical techniques are based on the measurement of current and potential, and, in the case of liquid electrodes, of the surface tension. While such measurements can be very precise, they give no direct information on the microscopic structure of the electrochemical interface. In this chapter we treat several methods which can provide such information. None of them is endemic to electrochemistry they are mostly skillful adaptations of techniques developed in other branches of physics and chemistry. [Pg.197]

All electrochemical techniques measure charge transferred across an interface. Since charge is the measurable quantity, it is not surprising that electrochemical theory has been founded on an electrostatic basis, with chemical effects added as a perturbation. In the electrostatic limit ions are treated as fully charged species with some level of solvation. If we are to use UHV models to test theories of the double layer, we must be able to study in UHV the weakly-adsorbing systems where these ideal "electrostatic" ions could be present and where we would expect the effects of water to be most dominant. To this end, and to allow application of UHV spectroscopic methods to the pH effects which control so much of aqueous interfacial chemistry, we have studied the coadsorption of water and anhydrous HF on Pt(lll) in UHV (3). Surface spectroscopies have allowed us to follow the ionization of the acid and to determine the extent of solvation both in the layer adjacent to the metal and in subsequent layers. [Pg.72]

Diffusion-limited electrochemical techniques as well as physical techniques have been effectively used to determine the surface fractal dimensions of the rough surfaces and interfaces made by electrodeposition, " fracture, " vapor deposition, ... [Pg.349]

Study of the charge-transfer processes (step 3 above), free of the effects of mass transport, is possible by the use of transient techniques. In the transient techniques the interface at equilibrium is changed from an equilibrium state to a steady state characterized by a new potential difference A(/>. Analysis of the time dependence of this transition is the basis of transient electrochemical techniques. We will discuss galvanostatic and potentiostatic transient techniques for other techniques [e.g., alternating current (ac)], the reader is referred to Refs. 50 to 55. [Pg.103]

SECM is a useful electrochemical technique for imaging the smface topographical structure at solid/liquid interfaces. " " Briefly, the electrochemical system consists of a 10 pm Pt-ultramicroelectrode (UME) with Ag/AgCl (3 M KCl) as the reference and Pt as the coimter electrode. The unmodified- and Pyc modified-Nafion membranes (side-1) are carefully moimted on a homemade plastic plate on the bottom of the SECM cell. [Pg.350]

Several examples of catenanes and rotaxanes have been constructed and investigated on solid surfaces.1 la,d f 12 13 26 If the interlocked molecular components contain electroactive units and the surface is that of an electrode, electrochemical techniques represent a powerful tool to study the behavior of the surface-immobilized ensemble. Catenanes and rotaxanes are usually deposited on solid surfaces by employing the Langmuir-Blodgett technique27 or the self-assembled monolayer (SAM) approach.28 The molecular components can either be already interlocked prior to attachment to the surface or become so in consequence of surface immobilization in the latter setting, the solid surface plays the dual role of a stopper and an interface (electrode). In most instances, the investigated compounds are deposited on macroscopic surfaces, such as those of metal or semiconductor electrodes 26 less common is the case of systems anchored on nanocrystals.29... [Pg.404]

Concerning the requirements of the detector, it is important to stress that interfacing a detector with an FIA system yields transient signals. Therefore, desirable detector characteristics include fast response, small dead volume and low memory effects. FI methods have been developed for UV and visible absorption spectrophotometry, molecular luminescence and a variety of electrochemical techniques and also for the most used atomic spectrometric techniques. [Pg.33]

With any electrochemical technique to study kinetics, the electrode-solution interface is perturbed from its initial situation. The initial conditions may be such that the system is in a chemical equilibrium and this usually means that the interfacial potential difference is determined by Nernst s law holding for the two components O and R of a redox couple being present... [Pg.209]

Since the electrochemical reduction or oxidation of a molecule occurs at the electrode-solution interface, molecules dissolved in solution in an electrochemical cell must be transported to the electrode for this process to occur. Consequently, the transport of molecules from the bulk liquid phase of the cell to the electrode surface is a key aspect of electrochemical techniques. This movement of material in an electrochemical cell is called mass transport. Three modes of mass transport are important in electrochemical techniques hydrodynamics, migration, and diffusion. [Pg.12]

Thus far we have examined diffusion under infinite conditions, where no phase boundaries exist. Some practical situations may be described by the above treatment. More frequently, the diffusion process will be initiated in the neighborhood of one or more phase boundaries as, for example, in chromatography and electrochemistry. The phase boundaries may be either permeable or impermeable to the diffusing solute. In electrochemical techniques, the boundary (e.g., the working electrode) is usually impermeable however, this is not always so (e.g., some ion-selective electrodes, membranes, liquid-liquid interfaces). In the... [Pg.22]

In the previous section, we demonstrated the micrometer droplet size dependence of the ET rate across a microdroplet/water interface. Beside ET reactions, interfacial mass transfer (MT) processes are also expected to depend on the droplet size. MT of ions across a polarized liquid/liquid interface have been studied by various electrochemical techniques [9-15,87], However, the techniques are disadvantageous to obtain an inside look at MT across a microspherical liquid/liquid interface, since the shape of the spherical interface varies by the change in an interfacial tension during electrochemical measurements. Direct measurements of single droplets possessing a nonpolarized liquid/liquid interface are necessary to elucidate the interfacial MT processes. On the basis of the laser trapping-electrochemistry technique, we discuss MT processes of ferrocene derivatives (FeCp-X) across a micro-oil-droplet/water interface in detail and demonstrate a droplet size dependence of the MT rate. [Pg.194]

In the last 30 years, the manufacturing and use of micrometer- and nanometer-sized electrochemical interfaces, microelectrodes, and micro-ITIES have been widely extended. The main advantages associated with the reduction of the size of the interface are the fast achievement of a time-independent current-potential response (independent of the electrochemical technique employed), the decrease of the ohmic drop, the improvement of the ratio of faradaic to charge current, and the enhancement of the mass transport. Their small size has played an important role in... [Pg.369]

The electrochemical behavior of molecules attached to conducting surfaces (i.e., electrode surfaces) forming electro-active monolayers is discussed in the following sections. This situation has frequently been called modified electrodes in the literature [39]. The electro-active character of these monolayers arises from the presence of redox molecules on them which are susceptible to transfer to or receive charge from the supporting electrode as well as from species in solution (in this last situation, the attached molecules act as redox mediators between the electrode and the solution and are responsible for the appearance of electrocatalytic processes [39, 40]). Multipulse and Sweep Electrochemical techniques like SCV and CV have proven to be very necessary tools for understanding the behavior of these interfaces and the processes taking place at them. [Pg.415]

In this section, the subtractive multipulse techniques DMPV and SWV are applied to reversible ion transfer across different liquid-liquid systems with one or two polarizable interfaces. These electrochemical techniques allow the accurate and easy determination of standard potentials directly from the peak potentials of the current-potential curves since non-faradaic and background currents are minimized [12, 35-40]. [Pg.499]

Itri buttons include the design and implementation of electrochemical techniques with both controlled j. potential and controlled current. For this purpose, j she has carried out the mathematical treatment with r. the aim of obtaining closed-form analytical solutions I. for very different situations. These include charge transfer processes at macrointerfaces and micro-and nano-interfaces of very different geometries, namely, electron transfer reactions complicated by... [Pg.661]

Our interest in SERS stemmed from our research activities concerned with establishing connections between the molecular structure of electrode interfaces and electrochemical reactivity. A current objective of our group is to employ SERS as a molecular probe of adsorbate-surface interactions to systems of relevance to electrochemical processes, and to examine the interfacial molecular changes brought about by electrochemical reactions. The combination of SERS and conventional electrochemical techniques can in principle yield a detailed picture of interfacial processes since the latter provides a sensitive monitor of the electron transfer and electronic redistributions associated with the surface molecular changes probed by the former. Although few such applications of SERS have been reported so far the approaches appear to have considerable promise. [Pg.136]

Therefore it is very important to complete the data obtained by (photo) electrochemical techniques with surface sensitive spectroscopic measurements. One promising possibility of gaining microscopic information on interfacial processes is the use of UHV surface science techniques. However due to the analysis requirements emersion of the samples from the electrolyte and transfer into UHV is necessary. During this procedure the semiconductor interface may change drastically. Alternatively the basic chemical and physical interactions of electrolyte components may be studied by adsorbing redox components on defined semiconductor surfaces thus simulating semiconductor/electrolyte junctions. [Pg.127]

There are non-electrochemical techniques that are being used to characterize the electrode/electrolyte interface and that cannot be grouped into the categories of the previous sections. These are based on measurements of mass and heat change. [Pg.276]


See other pages where Electrochemical techniques, interface is mentioned: [Pg.224]    [Pg.188]    [Pg.136]    [Pg.239]    [Pg.381]    [Pg.177]    [Pg.92]    [Pg.129]    [Pg.166]    [Pg.8]    [Pg.19]    [Pg.201]    [Pg.215]    [Pg.930]    [Pg.379]    [Pg.630]    [Pg.5]    [Pg.237]    [Pg.174]    [Pg.294]    [Pg.136]    [Pg.259]    [Pg.79]    [Pg.86]    [Pg.135]    [Pg.132]   


SEARCH



Electrochemical techniques

Electrochemical techniques metal-oxide interface

Interfaces electrochemical

Interfaces techniques

Interfacing technique

© 2024 chempedia.info