Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical cells electrolysis

The concept of oxidation has been expanded from a simple combination with oxygen to a process in which electrons are transferred. Oxidation cannot take place without reduction, and oxidation numbers can be used to summarize the transfer of electrons in redox reactions. These basic concepts can be applied to the principles of electrochemical cells, electrolysis, and applications of electrochemistry. [Pg.179]

Coulometric methods of analysis are based on an exhaustive electrolysis of the analyte. By exhaustive we mean that the analyte is quantitatively oxidized or reduced at the working electrode or reacts quantitatively with a reagent generated at the working electrode. There are two forms of coulometry controlled-potential coulometry, in which a constant potential is applied to the electrochemical cell, and controlled-current coulometry, in which a constant current is passed through the electrochemical cell. [Pg.496]

From this equation we see that increasing k leads to a shorter analysis time. For this reason controlled-potential coulometry is carried out in small-volume electrochemical cells, using electrodes with large surface areas and with high stirring rates. A quantitative electrolysis typically requires approximately 30-60 min, although shorter or longer times are possible. [Pg.498]

The purity of a sample of Na2S203 was determined by a coulometric redox titration using as a mediator, and as the titrant. A sample weighing 0.1342 g is transferred to a 100-mL volumetric flask and diluted to volume with distilled water. A 10.00-mL portion is transferred to an electrochemical cell along with 25 mL of 1 M KI, 75 mL of a pH 7.0 phosphate buffer, and several drops of a starch indicator solution. Electrolysis at a constant current of 36.45 mA required 221.8 s to reach the starch indicator end point. Determine the purity of the sample. [Pg.504]

Scale of Operation Coulometric methods of analysis can be used to analyze small absolute amounts of analyte. In controlled-current coulometry, for example, the moles of analyte consumed during an exhaustive electrolysis is given by equation 11.32. An electrolysis carried out with a constant current of 100 pA for 100 s, therefore, consumes only 1 X 10 mol of analyte if = 1. For an analyte with a molecular weight of 100 g/mol, 1 X 10 mol corresponds to only 10 pg. The concentration of analyte in the electrochemical cell, however, must be sufficient to allow an accurate determination of the end point. When using visual end points, coulometric titrations require solution concentrations greater than 10 M and, as with conventional titrations, are limited to major and minor analytes. A coulometric titration to a preset potentiometric end point is feasible even with solution concentrations of 10 M, making possible the analysis of trace analytes. [Pg.507]

These reactions can be carried out at room temperature. Hydrogen gas can also be produced on a laboratory scale by the electrolysis of an aqueous solution. Production of hydrogen through electrolysis is also used industrially. This involves the following reaction at the cathode of the electrochemical cell ... [Pg.415]

Manufacture. Most chlorate is manufactured by the electrolysis of sodium chloride solution in electrochemical cells without diaphragms. Potassium chloride can be electroly2ed for the direct production of potassium chlorate (35,36), but because sodium chlorate is so much more soluble (see Fig. 2), the production of the sodium salt is generally preferred. Potassium chlorate may be obtained from the sodium chlorate by a metathesis reaction with potassium chloride (37). [Pg.496]

Electric current, 78 Electric dipoles, see Dipoles Electric discharge, 239 Electric force, 76, 77 Electricity, fundamental unit, 241 Electrochemical cell chemistry of, 199 and Le Chatelier s Principle. 214 operation, 206 standard half cell, 21C Electrodes, 207 Electrolysis, 220, 221 apparatus, 40 cells, 238 of water, 40, 115 Electrolytes, 169, 179 strong, 180 weak,180... [Pg.458]

In this part of Chapter 12, we study electrolysis, the process of driving a reaction in a nonspontaneous direction by using an electric current. First, we see how electrochemical cells are constructed for electrolysis and how to predict the potential needed to bring electrolysis about. Then, we examine the products of electrolysis and see how to predict the amount of products to expect for a given flow ot electric current. [Pg.630]

An electrochemical cell in which electrolysis takes place is called an electrolytic cell. The arrangement of components in electrolytic cells is different from that in galvanic cells. Typically, the two electrodes share the same compartment, there is only one electrolyte, and concentrations and pressures are far front standard. As in all electrochemical cells, the current is carried through the electrolyte by the ions present. For example, when copper metal is refined electrolytically, the anode is impure copper, the cathode is pure copper, and the electrolyte is an aqueous solution of CuS04. As the Cu2f ions in solution are reduced and deposited as Cu atoms at the cathode, more Cu2+ ions migrate toward the cathode to take their place, and in turn their concentration is restored by Cu2+ produced by oxidation of copper metal at the anode. [Pg.630]

Electrochemical reductions and oxidations proceed in a more defined and controllable fashion because the potential can be maintained at the value suitable for a one-electron transfer and the course of the electrolysis can be followed polarographically and by measurement of the esr or electronic spectra. In some cases, conversion is low, which may be disadvantageous. Electrolytic generation of radical ions is a general method, and it has therefore become widely used in various applications. In Figures 3 and 4, we present electrochemical cells adapted for esr studies and for measurements of electronic spectra. Recently, electrochemical techniques have been developed that permit generation of unstable radicals at low temperatures (18-21). [Pg.333]

Here, an electrochemical cell working under irreversible conditions is considered. Its emf invariably moves away from the equilibrium value, and if the cell is serving as a battery or source of electricity, then its voltage drops below the equilibrium value. If, on the other hand, the cell is in a place where electrolysis is occurring, then the voltage to be applied must exceed the equilibrium value. [Pg.681]

As an introduction to the working of electrochemical cells, we shall consider first the various types of electrodes and then cell features such as potentials at the electrode solution interface and solution electrolysis, if any. [Pg.23]

Low-valent lanthanides represented by Sm(II) compounds induce one-electron reduction. Recycling of the Sm(II) species is first performed by electrochemical reduction of the Sm(III) species [32], In one-component cell electrolysis, the use of sacrificial anodes of Mg or A1 allows the samarium-catalyzed pinacol coupling. Samarium alkoxides are involved in the transmet-allation reaction of Sm(III)/Mg(II), liberating the Sm(III) species followed by further electrochemical reduction to re-enter the catalytic cycle. The Mg(II) ion is formed in situ by anodic oxidation. SmCl3 can be used in DMF or NMP as a catalyst precursor without the preparation of air- and water-sensitive Sm(II) derivatives such as Sml2 or Cp2Sm. [Pg.70]

A variety of transition metal complexes including organometallics was subjected to an ac electrolysis in a simple undivided electrochemical cell, containing only two current-carrying platinum electrodes. The compounds (A) are reduced and oxidized at the same electrode. If the excitation energy of these compounds is smaller than the potential difference of the reduced (A ) and oxidized (A ) forms, back electron transfer may regenerate the complexes in an electronically excited state (A+ + A A + A). Under favorable conditions an electrochemiluminescence (eel) is then observed (A A + hv). A weak eel appeared upon electrolysis o t]jie following complexes Ir(III)-(2-phenylpyridine-C, N ) [Cu(I)(pyridine)i],... [Pg.159]

Our goal in this chapter is to help you understand how to balance redox equations, know the different types of electrochemical cells, and how to solve electrolysis problems. Have your textbook handy—you may need to find some information in electrochemical tables. We will be using the mole concept, so if you need some review refer to Chapter 3, especially the mass/mole relationships. You might also need to review the section concerning net-ionic equations in Chapter 4. And don t forget to Practice, Practice, Practice. [Pg.266]

We can recognize four main periods in the history of the study of aqueous solutions. Each period starts with one or more basic discoveries or advances in theoretical understanding. The first period, from about 1800 to 1890, was triggered by the discovery of the electrolysis of water followed by the investigation of other electrolysis reactions and electrochemical cells. Developments during this period are associated with names such as Davy, Faraday, Gay-Lussac, Hittorf, Ostwald, and Kohlrausch. The distinction between electrolytes and nonelectrolytes was made, the laws of electrolysis were quantitatively formulated, the electrical conductivity of electrolyte solutions was studied, and the concept of independent ions in solutions was proposed. [Pg.467]

Generally, irrespective of the technique for which they are used, electrochemical cells are constructed in a way which minimizes the resistance of the solution. The problem is particularly accentuated for those techniques which require high current flows (large-scale electrolysis and fast voltammetric techniques). When current flows in an electrochemical cell there is always an error in the potential due to the non-compensated solution resistance. The error is equal to / Rnc (see Chapter 1, Section 3). This implies that if, for example, a given potential is applied in order to initiate a cathodic process, the effective potential of the working electrode will be less negative compared to the nominally set value by a amount equal to i Rnc. Consequently, for high current values, even when Rnc is very small, the control of the potential can be critical. [Pg.142]

The success of an electrolysis process depends on the choice of a suitable electrochemical cell and optimal operation conditions because there is a widespread variety of electrolyte composition, cell constructions, electrode materials, and electrochemical reaction parameters. [Pg.29]

Constant current electrolysis is an easy way to operate an electrochemical cell. Usually, it is also applied in industrial scale electrolysis. For laboratory scale experiments, inexpensive power supplies for constant current operation are available (also a potentiostat normally can work in galvanostatic operation). The transferred charge can be calculated directly by multiplication of cell current and time (no integration is needed). [Pg.35]

Thus in practise, we can recognise two types of electrochemical cell. These are called electrolytic cells and galvanic cells. An electrolytic cell uses an external power source (i. e. a voltage source) to move the electrons and perform the electrolysis. The aim of the electrolysis may be to generate a species in solution, produce a precipitate, produce... [Pg.229]

The quantitative laws of electrochemistry were discovered by Michael Faraday of England. His 1834 paper on electrolysis introduced many of the terms that you have seen throughout this book, including ion, cation, anion, electrode, cathode, anode, and electrolyte. He found that the mass of a substance produced by a redox reaction at an electrode is proportional to the quantity of electrical charge that has passed through the electrochemical cell. For elements with different oxidation numbers, the same quantity of electricity produces fewer moles of the element with higher oxidation number. [Pg.125]


See other pages where Electrochemical cells electrolysis is mentioned: [Pg.948]    [Pg.340]    [Pg.1031]    [Pg.948]    [Pg.340]    [Pg.1031]    [Pg.35]    [Pg.85]    [Pg.497]    [Pg.501]    [Pg.505]    [Pg.327]    [Pg.686]    [Pg.237]    [Pg.125]    [Pg.1031]    [Pg.60]    [Pg.156]    [Pg.263]    [Pg.12]    [Pg.738]    [Pg.3]    [Pg.97]    [Pg.503]    [Pg.161]    [Pg.219]    [Pg.21]    [Pg.206]    [Pg.500]    [Pg.122]    [Pg.122]   
See also in sourсe #XX -- [ Pg.265 , Pg.632 , Pg.632 ]




SEARCH



Electrochemical cell

Electrolysis cell

© 2024 chempedia.info