Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolyte solutions effects

Dorn effect Electrolyte solution Suspended particles Cause Result... [Pg.5815]

Fig. V-1. Variation of m / o and n /wo with distance for = 51.38 mV and 0.01 M uni-univalent electrolyte solution at 23°C. The areas under the full lines give an excess of 0.90 X 10 mol of anions in a column of solution of 1-cm cross section and a deficiency of 0.32 x 10 mol of cations. There is, correspondingly, a compensating positive surface charge of 1.22 x 10 " mol of electronic charge per cm. The dashed line indicates the effect of recognizing a finite ion size. Fig. V-1. Variation of m / o and n /wo with distance for = 51.38 mV and 0.01 M uni-univalent electrolyte solution at 23°C. The areas under the full lines give an excess of 0.90 X 10 mol of anions in a column of solution of 1-cm cross section and a deficiency of 0.32 x 10 mol of cations. There is, correspondingly, a compensating positive surface charge of 1.22 x 10 " mol of electronic charge per cm. The dashed line indicates the effect of recognizing a finite ion size.
It has long been known that the form of a curved surface of mercury in contact with an electrolyte solution depends on its state of electrification [108, 109], and the earliest comprehensive investigation of the electrocapillary effect was made by Lippmann in 1875 [110]. A sketch of his apparatus is shown in Fig. V-10. [Pg.192]

Rehbinder and co-workers were pioneers in the study of environmental effects on the strength of solids [144], As discussed by Frumkin and others [143-145], the measured hardness of a metal immersed in an electrolyte solution varies with applied potential in the manner of an electrocapillary curve (see Section V-7). A dramatic demonstration of this so-called Rehbinder effect is the easy deformation of single crystals of tin and of zinc if the surface is coated with an oleic acid monolayer [144]. [Pg.281]

In principle, simulation teclmiques can be used, and Monte Carlo simulations of the primitive model of electrolyte solutions have appeared since the 1960s. Results for the osmotic coefficients are given for comparison in table A2.4.4 together with results from the MSA, PY and HNC approaches. The primitive model is clearly deficient for values of r. close to the closest distance of approach of the ions. Many years ago, Gurney [H] noted that when two ions are close enough together for their solvation sheaths to overlap, some solvent molecules become freed from ionic attraction and are effectively returned to the bulk [12]. [Pg.583]

Process variables also play a significant part in determination of surface finish. For example, the higher the current density, generally the smoother the finish on the workpiece surface. Tests using nickel machined in HCl solution show that the surface finish improves from an etched to a poHshed appearance when the current density is increased from ca 8 to 19 A/cm and the flow velocity is held constant. A similar effect is achieved when the electrolyte velocity is increased. Bright smooth finishes are obtained over the main machining zone using both NaCl and NaNO electrolyte solutions and current densities of 45-75 A/cm. ... [Pg.309]

The covalent character of mercury compounds and the corresponding abiUty to complex with various organic compounds explains the unusually wide solubihty characteristics. Mercury compounds are soluble in alcohols, ethyl ether, benzene, and other organic solvents. Moreover, small amounts of chemicals such as amines, ammonia (qv), and ammonium acetate can have a profound solubilizing effect (see COORDINATION COMPOUNDS). The solubihty of mercury and a wide variety of mercury salts and complexes in water and aqueous electrolyte solutions has been well outlined (5). [Pg.112]

Pinto-Graham Pinto and Graham studied multicomponent diffusion in electrolyte solutions. They focused on the Stefan-Maxwell equations and corrected for solvation effects. They achieved excellent results for 1-1 electrolytes in water at 25°C up to concentrations of 4M. [Pg.600]

One of the most remarkable results from the molecular simulation studies of aqueous electrolyte solutions was that no additional molecular forces needed to be introduced to prevent the much smaller ions (Na has a molecular diameter of less than 0.2 nm) from permeating the membrane, while permitting the larger water molecules (about 0.3 nm in diameter) to permeate the membrane. This appeared to be due to the large ionic clusters formed. The ions were surrounded by water molecules, thus increasing their effective size quite considerably to almost 1 nm. A typical cluster formed due to the interaction between the ions and a polar solvent is shown in Fig. 7. These clusters were found to be quite stable, with a fairly high energy of desolvation. The inability of the ions to permeate the membrane is also shown... [Pg.790]

The molecular simulations also showed that electro-osmosis is also observed in aqueous electrolyte solutions, as long as the external electric field is reversed periodically to prevent the ions from accumulating near the membrane. An example of this is shown in Fig. 10, which shows the effect of an electric field on a 4.67 mole percent aqueous LiCl solution at 25°C. It is quite clear that the mobility of the solvent molecules increases as a result of... [Pg.793]

There is a third experimental design often used for studies in electrolyte solutions, particularly aqueous solutions. In this design the reaction rate is studied as a function of ionic strength, and a rate variation is called a salt effect. In Chapter 5 we derived this relationship between the observed rate constant k and the activity coefficients of reactants l YA, yB) and transition state (y ) ... [Pg.386]

In contrast chemical and electrolytic polishing enables a smooth level surface to be produced without any residual stress being developed in the surface because the surface is removed by dissolution at relatively low chemical potential and at relatively low rates is such a way that metallic surface asperities are preferentially removed. For this to be most effective the solution properties must be optimised and the pretreatment must leave an essentially bare metal surface for attack by the electrolyte. [Pg.300]

An examination has, therefore, been made of the effect of solutions of potassium chloride on the electrolytic resistance of films cast from a penta-erythritol alkyd, a phenolformaldehyde tung oil and an epoxypolyamide varnishPotassium chloride was chosen because its conductivity is well known and unpigmented films were first examined in order to eliminate the complexities of polymer/pigment interaction. [Pg.599]

The anode compartment contains a reference electrode and counterelectrode and by means of a potentiostat the anode side is maintained at a constant potential. The coverage of adsorbed hydrogen on the cathode side will depend on the current density i and the nature of the electrolyte solution, and the cell can be used to study the effect of a variety of factors (composition and structure of alloys, pH of solution, effect of promoters and inhibitors) on hydrogen permeation. [Pg.1211]

At these high frequencies, the retarding effect of the ion-atmosphere on the movement of a central ion is greatly decreased and conductance tends to be increased. The capacitance effect is related to the absorption of energy due to induced polarisation and the continuous re-alignment of electrically unsymmetrical molecules in the oscillating field. With electrolyte solutions of low dielectric constant, it is the conductance which is mainly affected, whilst in solutions of low conductance and high dielectric constant, the effect is mostly in relation to capacitance. [Pg.527]

Manganese, D. of - continued with magnesium and zinc, (ti) 334 Mannitol 299, 581 Masking agents 12, 312 Mass action law 16 applications to electrolyte solutions, 23 Matrix effects 733, 794 Maxima in polarography 597 suppression of, 597, 611 Mean deviation 134 relative, 134 standard, 134 Measuring cylinders, 87 flasks, 81... [Pg.868]

A microelectrode has been used by Uchida et al. to study lithium deposition in order to minimize the effect of solution resistance [41], They used a Pt electrode (10-30 jum in diameter) to measure the lithium-ion diffusion coefficient in 1 mol L 1 LiC104/PC electrolyte. The diffusion coefficient was 4.7 x 10-6 cm2 s at 25 °C. [Pg.345]

In concentrated NaOH solutions, however, the deviations of the experimental data from the Parsons-Zobel plot are quite noticeable.72 These deviations can be used290 to find the derivative of the chemical potential of a single ion with respect to both the concentration of the given ion and the concentration of the ion of opposite sign. However, in concentrated electrolyte solutions, the deviations of the Parsons-Zobel plot can be caused by other effects,126 279"284 e.g., interferences between the solvent structure and the Debye length. Thus various effects may compensate each other for distances of molecular dimensions, and the Parsons-Zobel plot can appear more straight than it could be for an ideally flat interface. [Pg.56]

Small amounts of molecular oxygen can influence the value of ff=0.675 With the rise of the 02 concentration in the electrolyte solution, the form of the Z", E curve changes and the value of (7=0 shifts toward less negative values. However, the effect is weak after saturation of the solution with molecular hydrogen and holding the pc-Bi electrode for 30 min at E = -1.35 V (SCE), the original shape of the Z", E curves and the original value of Eff=0 is restored. This indicates that oxidation and reduction of a pc-Bi electrode surface are reversible processes. [Pg.112]

Table 26 shows some steps in the chronological sequence of compilations, which are evidently related to improvements in the preparation and control of electrode surfaces. In second order, the control of the cleanliness of the electrolyte solution has to be taken into consideration since its effect becomes more and more remarkable with solid surfaces. A transfer of emphasis can in fact be recognized from Hg (late 1800s) to sp-metals, to sd-metals, to single-crystal faces, to d-metals, although a sharp chronological separation cannot be made. [Pg.152]

A hypothetical solution that obeys Raoult s law exactly at all concentrations is called an ideal solution. In an ideal solution, the interactions between solute and solvent molecules are the same as the interactions between solvent molecules in the pure state and between solute molecules in the pure state. Consequently, the solute molecules mingle freely with the solvent molecules. That is, in an ideal solution, the enthalpy of solution is zero. Solutes that form nearly ideal solutions are often similar in composition and structure to the solvent molecules. For instance, methylbenzene (toluene), C6H5CH, forms nearly ideal solutions with benzene, C6H6. Real solutions do not obey Raoult s law at all concentrations but the lower the solute concentration, the more closely they resemble ideal solutions. Raoult s law is another example of a limiting law (Section 4.4), which in this case becomes increasingly valid as the concentration of the solute approaches zero. A solution that does not obey Raoult s law at a particular solute concentration is called a nonideal solution. Real solutions are approximately ideal at solute concentrations below about 0.1 M for nonelectrolyte solutions and 0.01 M for electrolyte solutions. The greater departure from ideality in electrolyte solutions arises from the interactions between ions, which occur over a long distance and hence have a pronounced effect. Unless stated otherwise, we shall assume that all the solutions that we meet are ideal. [Pg.452]

Measurement of the differential capacitance C = d /dE of the electrode/solution interface as a function of the electrode potential E results in a curve representing the influence of E on the value of C. The curves show an absolute minimum at E indicating a maximum in the effective thickness of the double layer as assumed in the simple model of a condenser [39Fru]. C is related to the electrocapillary curve and the surface tension according to C = d y/dE. Certain conditions have to be met in order to allow the measured capacity of the electrochemical double to be identified with the differential capacity (see [69Per]). In dilute electrolyte solutions this is generally the case. [Pg.183]


See other pages where Electrolyte solutions effects is mentioned: [Pg.202]    [Pg.244]    [Pg.281]    [Pg.417]    [Pg.1936]    [Pg.9]    [Pg.241]    [Pg.61]    [Pg.196]    [Pg.385]    [Pg.793]    [Pg.944]    [Pg.1057]    [Pg.229]    [Pg.95]    [Pg.1171]    [Pg.233]    [Pg.314]    [Pg.603]    [Pg.426]    [Pg.353]    [Pg.325]    [Pg.655]    [Pg.92]    [Pg.104]    [Pg.267]    [Pg.268]   


SEARCH



Effect of Electrolyte Concentration on Solution Conductivity

Effects of Cationic Species in Electrolyte Solution

Electrolyte effect

Electrolyte solutions

Electrolytic solution

Equilibria and Their Effect on the Permittivity of Electrolyte Solutions

Solution electrolyte solutes

© 2024 chempedia.info