Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double bonds heterocyclic synthesis

The concept of a 1,5-dipolar cyclization gives rise to a general method for the synthesis of an appreciable number of heterocyclic systems. 1,5-Dipoles are derived from 1,3-dipoles by conjugation with different double bond systems, and it is possible to derive 98 theoretically possible 1,5-dipolar systems. The general expression for a 1,5-dipole and some possible combinations of double bond systems are shown in Scheme 14. [Pg.152]

In theory, three isoxazolines are capable of existence 2-isoxazoline (2), 3-isoxazoline and 4-isoxazoline. The position of the double bond may also be designated by the use of the prefix A with an appropriate numerical superscript. Of these only the 2-isoxazolines have been investigated in any detail. The preparation of the first isoxazoline, 3,5-diphenyl-2-isoxazoline, from the reaction of )3-chloro-)3-phenylpropiophenone with hydroxylamine was reported in 1895 (1895CB957). Two major syntheses of 2-isoxazolines are the cycloaddition of nitrile A-oxides to alkenes and the reaction of a,/3-unsaturated ketones with hydroxylamine. Since 2-isoxazolines are readily oxidized to isoxazoles and possess some of the unique properties of isoxazoles, they also serve as key intermediates for the synthesis of other heterocycles and natural products. [Pg.3]

Synthesis of heterocycles by forming C—X bonds by radical reactions is not a generally applicable method, and seems not to be useful for making small rings. However, the attack of thiol radicals on double bonds can be a practical synthetic route, such as in the conversion of 1-hexene-7-thiol to thiepane (Section 5.17.3.3.1). [Pg.34]

The most important oxirane syntheses are by addition of an oxygen atom to a carbon-carbon double bond, i.e. by the epoxidation of alkenes, and these are considered in Section 5.05.4.2.2. The closing, by nucleophilic attack of oxygen on carbon, of an OCCX moiety is dealt with in Section 5.05.4.2.1 (this approach often uses alkenes as starting materials). Finally, oxirane synthesis from heterocycles is considered in Section 5.05.4.3 one of these methods, thermal rearrangement of 1,4-peroxides (Section 5.05.4.3.2), has assumed some importance in recent years. The synthesis of oxiranes is reviewed in (B-73MI50500) and (64HC(19-1U). [Pg.114]

Synthesis of the title compound is representative of a number of syntheses of nonaromatic nitrogen heterocycles via Pd(Ill-catalyzed amination of olefins. These tosylated enamines are not readily available by standard synthetic methods, and show potential for further functionalization of the heterocycle. The saturated amine can be synthesized from the title compound by hydrogenation of the double bond followed by photolytic deprotection. ... [Pg.55]

Whereas the fulvalenes 1-6 are relatively unstable hydrocarbons and therefore largely of theoretical interest, their heteroatom analogs demand considerable attention in synthetic chemistry and material sciences. Tlie general principle of heterocyclic chemistry to relate heterocyclic compounds to carbocyclic ones was the driving force for the synthesis and their application to heteroful-valenes. Numerous heterocyclic derivatives iso-rr-electronic with, for example, heptafulvalene 3 were accessible in which pairs of carbon atoms linked by double bonds were replaced by heteroatoms capable of contributing two tt-electrons. By this principle, the well-known tetrathiafulvalene and its derivatives have been synthesized successfully (Scheme 2). [Pg.116]

Strategies for stereoselective synthesis of molecules with remote stereoge-nic centers across a double bond of fixed configuration in particular, for synthesis of heterocycles, especially unsaturated macrocyclic lactones 99JCS(P1)1899. [Pg.203]

This silylene formation from 27 under mild conditions permits the synthesis of a variety of interesting carbo- and heterocycles, most of which are new types of compounds. The results are summarized in Schemes 5 and 6. The reactions with benzene and naphthalene represent the first examples of [2+1] cycloadditions of a silylene with aromatic C=C double bonds.59 623 The reactions with carbon disulfide and isocyanide (Scheme 6) are also of great interest because of their unusual reaction patterns.62b... [Pg.252]

Since Huisgen s definition of the general concepts of 1,3-dipolar cycloaddition, this class of reaction has been used extensively in organic synthesis. Nitro compounds can participate in 1,3-dipolar cycloaddition as sources of 1,3-dipoles such as nitronates or nitroxides. Because the reaction of nitrones can be compared with that of nitronates, recent development of nitrones in organic synthesis is briefly summarized. 1,3-Dipolar cycloadditions to a double bond or a triple bond lead to five-membered heterocyclic compounds (Scheme 8.12). There are many excellent reviews on 1,3-dipolar cycloaddition, in particular, the monograph by Torssell covers this topic comprehensively. This chapter describes only recent progress in this field. Many papers have appeared after the comprehensive monograph by Torssell. Here, the natural product synthesis and asymmetric 1,3-dipolar cycloaddition are emphasized.630 Synthesis of pyrrolidine and -izidine alkaloids based on cycloaddition reactions are also discussed in this chapter. [Pg.249]

The unique combination of double bonds in the molecules of those compounds, each with different reactivity along with the easy preparation, makes phosphorylated allenes useful substrates for the synthesis of different cyclic and noncyclic organophosphorus compounds. Recent investigations increase the scope of application of phosphorylated allenes as precursors in organic syntheses. Most of them are accompanied by the formation of five- or six-membered phosphorus heterocycles, which in many cases demonstrate certain biological activity. [Pg.36]

A special class of synthesis is the utilization of retro-Diels-Alder (RDA) reactions. A double RDA sequence was used to prepare the pyrimido[l,2-A]pyridazin-3-one 118. In this versatile method both reactants of the parent compound were constructed from cyclopentadiene. The parent compound 117 contains two norbornene units and decomposes on heating in toluene in a double RDA reaction leaving two double bonds in the target heterocycle. Similarily, the parent compound 119 decomposes in a single RDA reaction to yield the benzologue, pyridazino[6,l-3]-quinazolin-10-one 120 (Scheme 13) <2000SL67>. [Pg.274]

The 1,3-dipolar cycloaddition reactions to unsaturated carbon-carbon bonds have been known for quite some time and have become an important part of strategies for organic synthesis of many compounds (Smith and March, 2007). The 1,3-dipolar compounds that participate in this reaction include many of those that can be drawn having charged resonance hybrid structures, such as azides, diazoalkanes, nitriles, azomethine ylides, and aziridines, among others. The heterocyclic ring structures formed as the result of this reaction typically are triazoline, triazole, or pyrrolidine derivatives. In all cases, the product is a 5-membered heterocycle that contains components of both reactants and occurs with a reduction in the total bond unsaturation. In addition, this type of cycloaddition reaction can be done using carbon-carbon double bonds or triple bonds (alkynes). [Pg.680]

Monomeric compounds (x = 1) containing M=E double bonds remained unknown until Power and Roesky et al. reported in 2001 on the synthesis of the first monomeric iminoalane and -gallane by oxidative addition of an organoazide to a sterically encumbered low-valent A1(I) compound 4 This reaction type has been shown previously to yield heterocyclic compounds by use of sterically less hindered [Cp Al]4.145 Very recently, von Hanisch and Hampe synthesized the first GaAs compound featuring a Ga=As double bond5 (Scheme 19, Figs. 41 and 42). [Pg.293]

The 5-dig-mode of cyclization has been applied in the synthesis of N-heterocycles. For example, treatment of the /i-allenyl dithiosemicarbazide 37 with Bu3SnH and AIBN in hot benzene furnishes the substituted 3H-pyrrole 38 in 41% yield and the isomeric heterocycle 39 in 30% yield (Scheme 11.13) [68], Iminyl radical 40 is formed via Bu3Sn addition to the thiocarbonyl group of the radical precursor 37 and fragmentation of the adduct (not shown). Nitrogen-centered radical 40 adds 5-dig-selectively to provide substituted allyl radical 41. The latter intermediate is trapped by Bu3SnH to furnish preferentially product 38 with an endocydic double bond. [Pg.718]

Acetylenic dienophiles have also been used in conjunction with a different type of diene (150) for the combinatorial synthesis of isoindolones 151 fused with furan, pyrrole or thiophene rings (Fig. 30) [129]. In this case, the diene involved in IMDA is not the 5-membered heterocycle itself, but the one including the exocyclic double bond. The resulting dihydrobenzene is easily aromatized by oxidation with DDQ or C/O2. The synthetic protocol is accomplished in a one-pot process. [Pg.26]

In its original form, the Michael addition consisted on the addition of diethyl malonate across the double bond of ethyl cinnamate in the presence of sodium ethoxide to afford a substituted pentanedioic acid ester. Currently, all reactions that involve a 1,4-addition of stabilized carbon nucleophiles to activated 7i-systems are known as Michael additions. Among the various reactants, enolates derived from p-dicarbonyl compounds are substrates of choice due to their easy deprotonation under mild conditions. Recently, Michael addition-based MCRs emerged as highly potential methodologies for the synthesis of polysubstituted heterocycles in the five- to seven-membered series. [Pg.256]

A number of intramolecular cycloadditions of alkene-tethered nitrile oxides, where the double bond forms part of a ring, have been used for the synthesis of fused carbocyclic structures (18,74,266-271). The cycloadditions afford the cis-fused bicyclic products, and this stereochemical outcome does not depend on the substituents on the alkene or on the carbon chain. When cyclic olefins were used, the configuration of the products found could be rationalized in terms of the transition states described in Scheme 6.49 (18,74,266-271). In the transition state leading to the cis-fused heterocycle, the dipole is more easily aligned with the dipolarophile if the nitrile oxide adds to the face of the cycloolefin in which the tethering chain resides. In the trans transition state, considerable nonbonded interactions and strain would have to be overcome in order to achieve good parallel alignment of the dipole and dipolarophile (74,266). [Pg.415]


See other pages where Double bonds heterocyclic synthesis is mentioned: [Pg.313]    [Pg.34]    [Pg.110]    [Pg.35]    [Pg.222]    [Pg.183]    [Pg.249]    [Pg.733]    [Pg.271]    [Pg.272]    [Pg.329]    [Pg.115]    [Pg.119]    [Pg.1150]    [Pg.1297]    [Pg.186]    [Pg.136]    [Pg.146]    [Pg.379]    [Pg.104]    [Pg.227]    [Pg.167]    [Pg.325]    [Pg.473]    [Pg.129]    [Pg.123]    [Pg.141]    [Pg.5]    [Pg.231]    [Pg.127]    [Pg.50]    [Pg.202]    [Pg.3]    [Pg.794]   
See also in sourсe #XX -- [ Pg.637 , Pg.638 ]

See also in sourсe #XX -- [ Pg.637 , Pg.638 ]




SEARCH



Bonds synthesis

Dienes heterocyclic synthesis, double bonds

© 2024 chempedia.info