Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dissociation solvent effects

A prototype of such phenomena can be seen in even the simplest carboxylic acid, acetic acid (CH3CHOOH). Acidity is determined by the energy or free energy difference between the dissociated and nondissociated forms, whose energetics usually depend significantly on their conformation, e.g., the syn/anti conformational change of the carboxyl-ate group in the compound substantially affects the acid-base equilibrium. The coupled conformation and solvent effects on acidity is treated in Ref. 20. [Pg.427]

The conductometric results of Meerwein et al. (1957 b) mentioned above demonstrate that, in contrast to other products of the coupling of nucleophiles to arenediazonium ions, the diazosulfones are characterized by a relatively weak and polarized covalent bond between the p-nitrogen and the nucleophilic atom of the nucleophile. This also becomes evident in the ambidentate solvent effects found in the thermal decomposition of methyl benzenediazosulfone by Kice and Gabrielson (1970). In apolar solvents such as benzene or diphenylmethane, they were able to isolate decomposition products arising via a mechanism involving homolytic dissociation of the N — S bond. In a polar, aprotic solvent (acetonitrile), however, the primary product was acetanilide. The latter is thought to arise via an initial hetero-lytic dissociation and reaction of the diazonium ion with the solvent (Scheme 6-11). [Pg.118]

The evidence presented so far excludes the formation of dissociated ions as the principal precursor to sulfone, since such a mechanism would yield a mixture of two isomeric sulfones. Similarly, in the case of optically active ester a racemic product should be formed. The observed data are consistent with either an ion-pair mechanism or a more concerted cyclic intramolecular mechanism involving little change between the polarity of the ground state and transition state. Support for the second alternative was found from measurements of the substituent and solvent effects on the rate of reaction. [Pg.671]

Jorgensen et al. [84] studied how solvent effects could influence the course of Diels-Alder reactions catalyzed by copper(II)-bisoxazoline. They assumed that the use of polar solvents (generally nitroalkanes) improved the activity and selectivity of the cationic copper-Lewis acid used in the hetero Diels-Alder reaction of alkylglyoxylates with dienes (Scheme 31, reaction 1). The explanation, close to that given by Evans regarding the crucial role of the counterion, is a stabilization of the dissociated ion, leading to a more defined complex conformation. They also used this reaction for the synthesis of a precursor for highly valuable sesquiterpene lactones with an enantiomeric excess superior to 99%. [Pg.118]

The rate constants in organic reaction in a solvent generally reflect the solvent effect. Various empirical measures of the solvent effect have been proposed and correlated with the reaction rate constant [5]. Of these, some measures have a linear relation to the solubility parameter of the solvent. The logarithms of kj and k2/ki were plotted against the solubility parameter of toluene, NMP and DMSO[6] in Fig. 2. As shown in Fig.2, the plots satisfied the linear relationship. The solvent polarity is increased by the increase of solubility parameter of the solvent. It may be assumed that increase of unstability and solvation of Ci due to the increase of solvent polarity make the dissociation reaction of Ci and the reaction between Ci and COisuch as SNi by solvation[7] easier, respectively, and then, k2/ki and ks increases as increasing the solubility parameter as shown in Fig. 2. [Pg.347]

An unusually slow relaxation has been observed for the 2,6-pyridine-dicarboxaldimine cobalt(II) complex [Co(2,6-(CH3NH=CH)2py)2](PFg)2 in solution. Thus a relaxation time -c = 83 ns has been reported [99], the rate constants being among the lowest found. It has been suggested that nonelectronic factors such as partial ligand dissociation, steric effects or solvent interaction may be rate determining in this equilibrium. [Pg.82]

Under other reaction conditions, the product can result from thermodynamic control. Aldol reactions can be effected for many compounds using less than a stoichiometric amount of base. In these circumstances, the aldol reaction is reversible and the product ratio is determined by the relative stability of the various possible products. Thermodynamic conditions also permit equilibration among the enolates of the nucleophile. The conditions that lead to equilibration include higher reaction temperatures, protic or polar dissociating solvents, and the use of weakly coordinating cations. Thermodynamic conditions can be used to enrich the composition in the most stable of the isomeric products. [Pg.65]

The second series of data on protic solvent effects in bromination that are related to transition states comprises the m-values of solvent-reactivity correlations. First, it is important to underline that 7-parameters, the solvent ionizing powers, established from solvolytic displacements, work fairly well in this electrophilic addition. This is expected since bromination, like SN1 reactions, leads to a cation-anion pair by heterolytic dissociation of the bromine-olefin CTC, a process similar to the ionization of halogenated or ether derivatives (Scheme 14). [Pg.270]

Co2(CO)q system, reveals that the reactions proceed through mononuclear transition states and intermediates, many of which have established precedents. The major pathway requires neither radical intermediates nor free formaldehyde. The observed rate laws, product distributions, kinetic isotope effects, solvent effects, and thermochemical parameters are accounted for by the proposed mechanistic scheme. Significant support of the proposed scheme at every crucial step is provided by a new type of semi-empirical molecular-orbital calculation which is parameterized via known bond-dissociation energies. The results may serve as a starting point for more detailed calculations. Generalization to other transition-metal catalyzed systems is not yet possible. [Pg.39]

The several theoretical and/or simulation methods developed for modelling the solvation phenomena can be applied to the treatment of solvent effects on chemical reactivity. A variety of systems - ranging from small molecules to very large ones, such as biomolecules [236-238], biological membranes [239] and polymers [240] -and problems - mechanism of organic reactions [25, 79, 223, 241-247], chemical reactions in supercritical fluids [216, 248-250], ultrafast spectroscopy [251-255], electrochemical processes [256, 257], proton transfer [74, 75, 231], electron transfer [76, 77, 104, 258-261], charge transfer reactions and complexes [262-264], molecular and ionic spectra and excited states [24, 265-268], solvent-induced polarizability [221, 269], reaction dynamics [28, 78, 270-276], isomerization [110, 277-279], tautomeric equilibrium [280-282], conformational changes [283], dissociation reactions [199, 200, 227], stability [284] - have been treated by these techniques. Some of these... [Pg.339]

The dissociation constant of an analyte can be calculated mathematically from Hammet s equation.27 The organic solvent effect on the pA a has also been examined 26... [Pg.113]

Partial fluorination of 4-arylthio-l,3-dioxolan-2-ones occurs preferentially at the carbon atom adjacent to the thio group [67]. However, a remarkable solvent effect is encountered. In the more polar solvent, dimethoxyethane substitution occurs, while in the less polar dichloromethane a larger portion of the desulfurization with cleavage of the phenylthio group takes place. This is attributed to the fact that the intermediate radical cation is more stable in the polar solvent and undergoes deprotonation, while in the less polar solvent, the less stabilized radical cation dissociates into a dioxolane cation and a phenylthio radical. [Pg.407]

When solvated ions migrate within the electrolyte, the drag force applied by the surrounding solvent molecules is measured by solvent viscosity rj. Thus, in a solvent of lower viscosity, the solvated ions would move more easily in response to an applied electric field, as expressed by the Einstein—Stokes relation (eq 3). Solvents of low viscosity have always been considered the ideal candidates for electrolyte application however, their actual use was restricted because most of these solvents have low dielectric constants (Tables 1 and 2) and cannot dissociate ions effectively enough to prevent ion pairing. [Pg.81]

The solvent effects on the C-Cl bond cleavage in the aromatic radical anions of 9-chloroanthracene, 3-nitrobenzyl chloride, and 3-chloroacetophenone were described by applying the Saveant model. The results showed that the bond dissociation energy is not strongly solvent dependent. [Pg.184]

In this chapter, we have collected and discussed the available data in both gas and liquid phases related to Scheme 2.1. Emphasis will be given to homolytic bond dissociation enthalpies of silanes. Generally, Df/values are extrapolated from the gas phase to solution without concerning solvent effects (particularly in the... [Pg.20]


See other pages where Dissociation solvent effects is mentioned: [Pg.1144]    [Pg.391]    [Pg.398]    [Pg.424]    [Pg.591]    [Pg.83]    [Pg.18]    [Pg.3]    [Pg.1144]    [Pg.109]    [Pg.185]    [Pg.547]    [Pg.252]    [Pg.253]    [Pg.583]    [Pg.79]    [Pg.86]    [Pg.360]    [Pg.316]    [Pg.13]    [Pg.403]    [Pg.210]    [Pg.35]    [Pg.278]    [Pg.265]    [Pg.177]    [Pg.112]    [Pg.311]    [Pg.429]    [Pg.450]    [Pg.473]    [Pg.92]    [Pg.81]    [Pg.127]    [Pg.464]   
See also in sourсe #XX -- [ Pg.46 , Pg.47 , Pg.48 , Pg.49 , Pg.50 , Pg.51 , Pg.52 , Pg.53 , Pg.54 , Pg.55 ]




SEARCH



Dissociating solvents

Dissociation dissociating solvents

Dissociation effects

Solvent dissociation

Solvent effects in dissociation of benzoic

© 2024 chempedia.info