Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.3- Dipoles nitrones

The three types of three-membered ring are also accessible by photoisomerization of open chain 1,3-dipoles nitrones, azomethinimines and linear diazo compounds respectively. All three-membered rings prepared prior to 1967 were included in a comprehensive review . [Pg.228]

Formal addition products of 1,3-dipoles are compiled in a recent review (79AHC(24)63). Examples include addition to a nitrone forming a six-membered ring, to an enamine forming a pyrazolidine ring, and to the C=0 bond of diphenylcyclopropenone. [Pg.215]

Reactions offluorinated dipoles. In recent years, much effort has been devoted to the preparation of tnfluoromethyl-substituted 1,3-dipoles with the goal of using them to introduce trifluoromethyl groups into five-membered nng heterocycles Fluorinated diazoalkanes were the first such 1,3-dipoles to be prepared and used in synthesis A number of reports of cycloadditions of mono- and bis(tnfluo-romethyl)diazomethane appeared prior to 1972 [9] Other types of fluonne-substi-tuted 1,3-dipoles were virtually unknown until only recently However, largely because of the efforts of Tanaka s group, a broad knowledge of the chemistry of tnfluoromethyl-substituted nitrile oxides, nitnle imines, nitnle ylides, and nitrones has been accumulated recently... [Pg.807]

In the 1,3-dipolar cycloaddition reactions of especially allyl anion type 1,3-dipoles with alkenes the formation of diastereomers has to be considered. In reactions of nitrones with a terminal alkene the nitrone can approach the alkene in an endo or an exo fashion giving rise to two different diastereomers. The nomenclature endo and exo is well known from the Diels-Alder reaction [3]. The endo isomer arises from the reaction in which the nitrogen atom of the dipole points in the same direction as the substituent of the alkene as outlined in Scheme 6.7. However, compared with the Diels-Alder reaction in which the endo transition state is stabilized by secondary 7t-orbital interactions, the actual interaction of the N-nitrone p -orbital with a vicinal p -orbital on the alkene, and thus the stabilization, is small [25]. The endojexo selectivity in the 1,3-dipolar cycloaddition reaction is therefore primarily controlled by the structure of the substrates or by a catalyst. [Pg.217]

Dipolar cydoadditions are one of the most useful synthetic methods to make stereochemically defined five-membered heterocydes. Although a variety of dia-stereoselective 1,3-dipolar cydoadditions have been well developed, enantioselec-tive versions are still limited [29]. Nitrones are important 1,3-dipoles that have been the target of catalyzed enantioselective reactions [66]. Three different approaches to catalyzed enantioselective reactions have been taken (1) activation of electron-defident alkenes by a chiral Lewis acid [23-26, 32-34, 67], (2) activation of nitrones in the reaction with ketene acetals [30, 31], and (3) coordination of both nitrones and allylic alcohols on a chiral catalyst [20]. Among these approaches, the dipole/HOMO-controlled reactions of electron-deficient alkenes are especially promising because a variety of combinations between chiral Lewis acids and electron-deficient alkenes have been well investigated in the study of catalyzed enantioselective Diels-Alder reactions. Enantioselectivities in catalyzed nitrone cydoadditions sometimes exceed 90% ee, but the efficiency of catalytic loading remains insufficient. [Pg.268]

Nitrones are a rather polarized 1,3-dipoles so that the transition structure of their cydoaddition reactions to alkenes activated by an electron-withdrawing substituent would involve some asynchronous nature with respect to the newly forming bonds, especially so in the Lewis acid-catalyzed reactions. Therefore, the transition structures for the catalyzed nitrone cydoaddition reactions were estimated on the basis of ab-initio calculations using the 3-21G basis set. A model reaction indudes the interaction between CH2=NH(0) and acrolein in the presence or absence of BH3 as an acid catalyst (Scheme 7.30). Both the catalyzed and uncatalyzed reactions have only one transition state in each case, indicating that the reactions are both concerted. However, the synchronous nature between the newly forming 01-C5 and C3-C4 bonds in the transition structure TS-J of the catalyzed reaction is rather different from that in the uncatalyzed reaction TS-K. For example, the bond lengths and bond orders in the uncatalyzed reaction are 1.93 A and 0.37 for the 01-C5 bond and 2.47 A and 0.19 for the C3-C4 bond, while those in... [Pg.276]

The class of 1,3-dipolar cycloadditions embraces a variety of reactions that can accomplish the synthesis of a diverse array of polyfunctional and stereochemically complex five-membered rings.3 The first report of a 1,3-dipolar cycloaddition of a nitrone (a 1,3-dipole) to phenyl isocyanate (a dipolarophile) came from Beckmann s laboratory in 1890,4 and a full 70 years elapsed before several investigators simultaneously reported examples of nitrone-olefin [3+2] cycloadditions.5 The pioneering and brilliant investigations of Huisgen and his coworkers6 have deepened our under-... [Pg.285]

Chlordiazepoxide functions as a 1,3-dipole (a nitrone) in the reaction with ethyl propiolate to give the cycloadduct 20.247... [Pg.416]

Alkoxy)alkynylcarbene complexes have been shown to react with nitrones to give dihydroisoxazole derivatives [47]. Masked 1,3-dipoles such as 1,3-thia-zolium-4-olates also react with alkynylcarbene complexes to yield thiophene derivatives. The initial cycloadducts formed in this reaction are not isolated and they evolve by elimination of isocyanate to give the final products [48]. The analogous reaction with munchnones or sydnones as synthetic equivalents of... [Pg.72]

An in depth account of intramolecular 1,3-dipoIar cycloadditions involving dipoles such as nitrUe oxides, sUyl nitronates, H-nitrones, azides, and nitrUimines is presented with particular emphasis on the stereochemistry during the cycloaddition. Various methods employed for the generation of the dipoles and their applications to stereoselective synthesis are also discussed. [Pg.1]

In addition to nitrones, azomethine ylides are also valuable 1,3-dipoles for five-membered heterocycles [415], which have found useful applications in the synthesis of for example, alkaloids [416]. Again, the groups of both Grigg [417] and Risch [418] have contributed to this field. As reported by the latter group, the treatment of secondary amines 2-824 with benzaldehyde and an appropriate dipolarophile leads to the formation of either substituted pyrrolidines 2-823, 2-825 and 2-826 or oxa-zolidines 2-828 with the 1,3-dipole 2-827 as intermediate (Scheme 2.184). However, the yields and the diastereoselectivities are not always satisfactory. [Pg.177]

In general, the Henry reaction proceeds in a non-selective way to give a mixture of anti (erythro) and syn (threo) isomers. Ab initio calculations on the Henry reaction suggest that free nitronate anions (not influenced by cations) react with aldehydes via transition states in which the nitro and carbonyl dipoles are antiperiplanar to each other. This kind of reaction yields anti-nitro alcohols. The Henry reaction between lithium nitronates and aldehydes is predicted to occur via cyclic transition states yielding syn-nitro alcohols as major products (Eq. 3.64).108... [Pg.51]

Since Huisgen s definition of the general concepts of 1,3-dipolar cycloaddition, this class of reaction has been used extensively in organic synthesis. Nitro compounds can participate in 1,3-dipolar cycloaddition as sources of 1,3-dipoles such as nitronates or nitroxides. Because the reaction of nitrones can be compared with that of nitronates, recent development of nitrones in organic synthesis is briefly summarized. 1,3-Dipolar cycloadditions to a double bond or a triple bond lead to five-membered heterocyclic compounds (Scheme 8.12). There are many excellent reviews on 1,3-dipolar cycloaddition, in particular, the monograph by Torssell covers this topic comprehensively. This chapter describes only recent progress in this field. Many papers have appeared after the comprehensive monograph by Torssell. Here, the natural product synthesis and asymmetric 1,3-dipolar cycloaddition are emphasized.630 Synthesis of pyrrolidine and -izidine alkaloids based on cycloaddition reactions are also discussed in this chapter. [Pg.249]

Nitrones, reactive 1,3-dipoles, react with alkenes and alkynes to form isoxazolidines and isoxazolines, respectively. With monosubstituted olefinic dipolarophiles, 5-substituted isoxazolidines are generally formed predominantly however, with olefins bearing strongly electron-withdrawing groups, 4-substituted derivatives may also be formed.631... [Pg.250]

Nitronates show a similar reactivity to that of nitrones, and nitrones are one of 1,3-dipoles that have been successfully developed to catalyzed asymmetric versions, as discussed in the section on nitrones (Section 8.2.1). However, asymmetric nitronate cycloadditions catalyzed chiral metal catalysts have not been reported. Kanemasa and coworkers have demonstrated that nitronate cycloaddition is catalyzed by Lewis acids (Eq. 8.93).146 This may open a new way to asymmetric nitronate cycloaddition catalyzed by chiral catalysts. [Pg.274]

Recently, Denmark and coworkers have developed a new strategy for the construction of complex molecules using tandem [4+2]/[3+2]cycloaddition of nitroalkenes.149 In the review by Denmark, the definition of tandem reaction is described and tandem cascade cycloadditions, tandem consecutive cycloadditions, and tandem sequential cycloadditions are also defined. The use of nitroalkenes as heterodienes leads to the development of a general, high-yielding, and stereoselective method for the synthesis of cyclic nitronates (see Section 5.2). These dipoles undergo 1,3-dipolar cycloadditions. However, synthetic applications of this process are rare in contrast to the functionally equivalent cycloadditions of nitrile oxides. This is due to the lack of general methods for the preparation of nitronates and their instability. Thus, as illustrated in Scheme 8.29, the potential for a tandem process is formulated in the combination of [4+2] cycloaddition of a donor dienophile with [3+2]cycload-... [Pg.274]

Relative contribution of each of these structures differs significantly and is determined by internal structural characteristics of the nitrones and by the influence of external factors, such as changes in polarity of solvent, formation of a hydrogen bond, and complexation and protonation. Changes in the electronic stmcture of nitrones, effected by any of these factors, which are manifested in the changes of physicochemical properties and spectral characteristics, can be explained, qualitatively, by analyzing the relative contribution of A-G structures. On the basis of a vector analysis of dipole moments of two series of nitrones (355), a quantum-chemical computation of ab initio molecular orbitals of the model nitrone CH2=N(H)0 and its tautomers, and methyl derivatives (356), it has been established that the bond in nitrones between C and N atoms is almost... [Pg.183]

In Scheme 2.210, possible variants of intramolecular 1,3-dipole cycloaddition of norbomadiene derivatives with 2-substituted norbomadiene-tethered nitrones are presented. [Pg.298]

It was shown (801) that the diastereoselectivity of a-fluoroalkyl nitrones is reversed to that of the corresponding a-alkyl nitrones. This fact supports the conclusion that the conformation, due to the relief of the dipole repulsion between the fluorine atom and the oxygen atom of the nitrone is preferred in a-fluoroalkyl nitrones. [Pg.358]

The use of nitriles as dipolarophiles in 1,3-dipolar cycloaddition reactions is scarce because of their relative inertness in such reactions. Indeed, nitriles with electron-donor substituents do not react with nitrones even under harsh conditions. Hence, an additional activation of the reactants is required. This can be achieved, either by activating the nitrile (dipolarophile) or the nitrone (dipole), or both of them. For example, the reaction of electron-difficient nitriles such as... [Pg.376]

Cycloaddition of Nitrocarbenes. Scheme 3.24 presents possible approaches to the synthesis of five-membered cyclic nitronates (24), where [3 + 2]-cyclo-addition of intermediate nitrocarbenes (as dipoles B) to olefins as trapping agents is the key step. [Pg.452]


See other pages where 1.3- Dipoles nitrones is mentioned: [Pg.532]    [Pg.1]    [Pg.11]    [Pg.12]    [Pg.74]    [Pg.532]    [Pg.217]    [Pg.1]    [Pg.11]    [Pg.12]    [Pg.74]    [Pg.147]    [Pg.213]    [Pg.213]    [Pg.216]    [Pg.51]    [Pg.249]    [Pg.274]    [Pg.807]    [Pg.209]    [Pg.807]    [Pg.297]    [Pg.298]    [Pg.535]    [Pg.195]    [Pg.268]    [Pg.43]    [Pg.235]    [Pg.379]    [Pg.399]    [Pg.399]   
See also in sourсe #XX -- [ Pg.1060 ]

See also in sourсe #XX -- [ Pg.335 ]




SEARCH



Cyclic nitronates nitronate chiral dipoles

Dipole structures nitrones/nitronates

Nitronate as 1,3-dipole

Nitronates diastereoselectivity, chiral dipoles

Nitrone, as 1,3-dipole

Nitrones and nitrile oxides as 1,3-dipoles

Nitrones as 1,3-dipoles

Nitrones diastereoselectivity, chiral dipoles

Nitrones dipole moments

© 2024 chempedia.info