Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diols asymmetric oxidation

The asymmetric oxidation of organic compounds, especially the epoxidation, dihydroxylation, aminohydroxylation, aziridination, and related reactions have been extensively studied and found widespread applications in the asymmetric synthesis of many important compounds. Like many other asymmetric reactions discussed in other chapters of this book, oxidation systems have been developed and extended steadily over the years in order to attain high stereoselectivity. This chapter on oxidation is organized into several key topics. The first section covers the formation of epoxides from allylic alcohols or their derivatives and the corresponding ring-opening reactions of the thus formed 2,3-epoxy alcohols. The second part deals with dihydroxylation reactions, which can provide diols from olefins. The third section delineates the recently discovered aminohydroxylation of olefins. The fourth topic involves the oxidation of unfunc-tionalized olefins. The chapter ends with a discussion of the oxidation of eno-lates and asymmetric aziridination reactions. [Pg.195]

Permanganese is a common oxidative reagent, the application of which to the asymmetric oxidative cyclization of 1,5-dienes has been reported by Brown (Scheme 3.14). The addition of acetic acid is quite important for the reaction to proceed, and highly functionalized tetrahydrofurans are obtained in a range of 58 to 75% ee, in diastereoselective manner [35]. Another oxidative transformation using KMn04 with a chiral ammonium salt has been investigated. Scheme 3.15 illustrates the asymmetric dihydroxylation of electron-deficient olefins to chiral diols in the... [Pg.41]

The development of simple systems that allow for the asymmetric oxidation of allyl alcohols and simple alkenes to epoxides or 1,2-diols has had a great impact on synthetic methodology because it allows for the introduction of functionality with concurrent formation of one or two stereogenic centers. This functionality can then be used for subsequent reactions that usually fall into the... [Pg.8]

The 1,2-diols formed by the asymmetric oxidation can be used as substrates in a wide variety of transformations. Conversion of the hydroxy groups to p-toluenesulfonates then allows nucleophilic displacement by azide at both centers with inversion of configuration (Scheme 9.22).161... [Pg.135]

Methodology has been found that allows for the asymmetric oxidation of alkenes and allyl alcohol to the corresponding epoxides or diols. The HKR method is beginning to be used to access chiral epoxides. Although asymmetric oxidations are now being used at scale, they are not used nearly as often as asymmetric reductions. [Pg.141]

Sharpless asymmetric oxidation of the meso 1,4-diol 10 results in its desymmetrisation to the pyran-3-one, which exists as a mixture with the dihydrofuran, and the doubly oxidised bis-pyranone. Each of these hemiacetals can be individually trapped in good yield by careful choice of reaction conditions <03OBC2393>. [Pg.410]

Preparative Methods racemic l,l -bi-2,2 -naphthol (BINOL) is most conveniently prepared by the oxidative coupling reaction of 2-naphthol in the presence of transition metal complexes (eq 1). The resolution of racemic BINOL with cinchonine may be performed via the cyclic phosphate (eq 2). An alternative procedure to provide directly optically active BINOL is the oxidative coupling of 2-naphthol catalyzed by Cu salt in the presence of chiral amines (eq 3). The best procedure uses (+)-amphetamine as the chiral ligand and provides BINOL in 98% yield and 96% ee. Above 25 °C the Cu /(+)-amphetamine/(5)-BINOL complex precipitates, while the more soluble Cu /(+)-amphetamine/(I )-BINOL complex is slowly transformed into the former complex. 9,9 -Biphenanthrene-10,10 -diol has also been prepared in 86% yield and with 98% ee by a similar asymmetric oxidative coupling of 9-phenanthrol in the presence of (I )- 1,2-diphenylethylamine. ... [Pg.86]

Stereoselective Synthesis of Biaryl Compounds. The best known application of (1) to the asymmetric oxidative coupling of phenolic compounds is the copper(II)-catalyzed synthesis of l,r-binaphthyl-2,2 -diol in greater than 95% ee (eq 1). ... [Pg.477]

The last and key step during the total synthesis of (-)-laulimalide by I. Paterson et al. was the Sharpless asymmetric epoxidation. The success of the total synthesis relied on the efficient kinetic differentiation of the Cis and C20 allylic alcohols during the epoxidation step. When the macrocyclic diol was oxidized in the presence of (+)-DIPT at -27 °C for 15h, only the C16-C17 epoxide was formed. [Pg.409]

For oxidation reactions, the cinchona alkaloids have been mainly employed to control the osmium-catalyzed conversion of an alkene to give a 1,2-diol or vicinal functionalized alcohol. As these are important asymmetric reactions, they have been the subject of a number of reviews [1-18]. This chapter discusses the uses of these alkaloids as chiral ligands in asymmetric oxidation reactions. Oxidation reactions where an alkaloid is used in a phase-transfer sense are discussed in Chapter 5. [Pg.29]

The cinchona alkaloids have opened up the field of asymmetric oxidations of alkenes without the need for a functional group within the substrate to form a complex with the metal. Current methodology is limited to osmium-based oxidations. The power of the asymmetric dihydroxylation reaction is exemplified by the thousands (literally) of examples for the use of this reaction to establish stereogenic centers in target molecule synthesis. The usefulness of the AD reaction is augmented by the bountiful chemistry of cyclic sulfates and sulfites derived from the resultant 1,2-diols. [Pg.61]

Asymmetric oxidations have followed the usual development pathway in which face selectivity was observed through the use of chiral auxiliaries and templates. The breakthrough came with the Sharpless asymmetric epoxidation method, which, although stoichiometric, allowed for a wide range of substrates and the stereochemistry of the product to be controlled in a predictable manner [1]. The need for a catalytic reaction was very apparent, but this was developed and now the Sharpless epoxidation is a viable process al scale, although subject to the usual economic problems of a cost-effective route to the substrate (see later) [2]. The Sharpless epoxidation has now been joined by other methods and a wide range of products are now available. The pow er of these oxidations is augmented by the synthetic utility of the resultant epoxides or diols that can be used for further transformations, especially those that use a substitution reaction (see Chapter 7) [1]. [Pg.227]

This mutant has been developed by Ley, Hudlicky and others into a practical method for the asymmetric oxidation of substituted benzenes to give the unstable diols best preserved as acetals. Even one substituent is enough to make the diol chiral and dihydroxylation normally occurs at... [Pg.660]

A quite strange yet very interesting phenomenon of the stereochemical outcome was observed in asymmetric oxidation of phenyl alkyl sulfides with para-substituted (R,R) 1,2-diarylethane-l,2-diol-Ti(IV) catalyst (Scheme 5.2). Both electron-donating (MeO) and, in particular, electron-withdrawing (CF3) substituents decreased enantioselectivity, although... [Pg.186]

Oxidation of Meso Diols. Asymmetric induction of meso and prochiral diols by lipases is very successful in the field of organic synthesis. Also it is well known that selective oxidation of prochiral or meso diols by HLADH provides oxidized products with a significant degree of enantioselectivity. However, it has not been reported that alcohol oxidases were applied to such types of oxidation. The microbial oxidation of meso diols by Candida boidinii SA051 was carried out and gave optically active hydroxy ketones (Figure 8). [Pg.193]

A comprehensive review (260 refs.) on the synthesis of carbohydrates from noncarbohydrate sources covers the use of benzene-derived diols and products of Sharpless asymmetric oxidation as starting materials, Dodoni s thiazole and Vogel s naked sugar approaches, as well as the application of enzyme-catalysed aldol condensations. The preparation of monosaccharides by enzyme-catalysed aldol condensations is also discussed in a review on recent advances in the chemoenzymic synthesis of carbohydrates and carbohydrate mimetics, in parts of reviews on the formation of carbon-carbon bonds by enzymic asymmetric synthesis and on carbohydrate-mediated biochemical recognition processes as potential targets for drug development, as well as in connection with the introduction of three Aldol Reaction Kits that provide dihydroxyacetone phosphate-dependent aldolases (27 refs.). A further review deals with the synthesis of carbohydrates by application of the nitrile oxide 1,3-dipolar cycloaddition (13 refs.). ... [Pg.2]

Suzuki T, Morita K, Matsuo Y, Hiroi K (2003) Catalytic asymmetric oxidative lactonizations of meso-diols using a chiral iridium complex. Tetrahedron Lett 44 2003-2(X)6... [Pg.100]

Scheme 2.49 Asymmetric oxidative lactonization of meso diols by lr(l) [88, 94],... Scheme 2.49 Asymmetric oxidative lactonization of meso diols by lr(l) [88, 94],...
Electrochemical Asymmetric Synthesis, Scheme 10 Asymmetric oxidation of diol... [Pg.457]

Kinetic resolution of secondary alcohols and desymmetrization of diols were reported by asymmetric oxidation using chiral (nitrosyl)Ru(salen) chloride (31) (Eq. (7.42)) [97] in addition to the aerobic oxidation reaction [97d]. [Pg.255]

A chiral Ti complex formed in situ by reacting Ti(0 Pr)4, (J ,P)-diphenylethane-1,2-diol, and water was reported to be effective for asymmetric oxidation of aryl alkyl and aryl benzyl sulfides using TBHP as the oxidant to obtain optically active sulfoxides in good yields and high enantiomeric excesses [274] (Scheme 14.115). [Pg.259]

A new catalytic procedure for the asymmetric oxidation of aryl alkyl and aryl benzyl sulfides to optically active sulfoxides by TBHP is mediated by a chiral titanium complex formed in situ by reacting Ti( -PrO)4, (R, / )-diphenylethane-l,2-diol, and water. The results were largely unaffected by the nature of the phenyl substituents, suggesting that the same mechanism operates in all cases. Only the / -N02 substituent on the aryl ring caused a considerable loss of enantioselectivity and this is attributed to the electron-withdrawing power of this group or, more likely, its coordinating ability. ... [Pg.211]

Onomura O, Arimoto H, Matsumura Y, Demizu Y. Asymmetric oxidation of 1,2-diols using N-bromosuccinimide in the presence of chiral copper catalyst. Tetrahedron Lett. 2007 48 8668-8672. [Pg.167]


See other pages where Diols asymmetric oxidation is mentioned: [Pg.110]    [Pg.110]    [Pg.92]    [Pg.223]    [Pg.322]    [Pg.393]    [Pg.124]    [Pg.308]    [Pg.60]    [Pg.54]    [Pg.508]    [Pg.608]    [Pg.715]    [Pg.247]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



Asymmetric oxidation

© 2024 chempedia.info