Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric dihydroxylation reaction

Several methods have been developed for the synthesis of the taxol side chain. We present here the asymmetric construction of this molecule via asymmetric epoxidation and asymmetric ring-opening reactions, asymmetric dihydroxylation and asymmetric aminohydroxylation reaction, asymmetric aldol reactions, as well as asymmetric Mannich reactions. [Pg.442]

Another important reaction associated with the name of Sharpless is the so-called Sharpless dihydroxylation i.e. the asymmetric dihydroxylation of alkenes upon treatment with osmium tetroxide in the presence of a cinchona alkaloid, such as dihydroquinine, dihydroquinidine or derivatives thereof, as the chiral ligand. This reaction is of wide applicability for the enantioselective dihydroxylation of alkenes, since it does not require additional functional groups in the substrate molecule ... [Pg.256]

The interest in asymmetric synthesis that began at the end of the 1970s did not ignore the dihydroxylation reaction. The stoichiometric osmylation had always been more reliable than the catalytic version, and it was clear that this should be the appropriate starting point. Criegee had shown that amines, pyridine in particular, accelerated the rate of the stoichiometric dihydroxylation, so it was understandable that the first attempt at nonenzymatic asymmetric dihydroxylation was to utilize a chiral, enantiomerically pure pyridine and determine if this induced asymmetry in the diol. This principle was verified by Sharpless (Scheme 7).20 The pyridine 25, derived from menthol, induced ee s of 3-18% in the dihydroxylation of /rcms-stilbene (23). Nonetheless, the ee s were too low and clearly had to be improved. [Pg.678]

Kinetic resolution of racemic allylic acetates has been accomplished via asymmetric dihydroxylation (p. 1051), and 2-oxoimidazolidine-4-carboxy-lates have been developed as new chiral auxiliaries for the kinetic resolution of amines. Reactions catalyzed by enzymes can be utilized for this kind of resolution. ... [Pg.154]

Chandrasekhar, S., Narsihmulu, C., Sultana, S.S., Reddy, N.R. (2003) Osmium Tetrox-ide in Poly(ethylene glycol) (PEG) A Recyclable Reaction Medium for Rapid Asymmetric Dihydroxylation Under Sharpless Conditions. Chemical Communications, 1716-1717. [Pg.187]

Amino-Hydroxylation. A related reaction to asymmetric dihydroxylation is the asymmetric amino-hydroxylation of olefins, forming v/c-ami noalcohols. The vic-hydroxyamino group is found in many biologically important molecules, such as the (3-amino acid 3.10 (the side-chain of taxol). In the mid-1970s, Sharpless76 reported that the trihydrate of N-chloro-p-toluenesulfonamide sodium salt (chloramine-T) reacts with olefins in the presence of a catalytic amount of osmium tetroxide to produce vicinal hydroxyl p-toluenesulfonamides (Eq. 3.16). Aminohydroxylation was also promoted by palladium.77... [Pg.59]

Subsequently, stoichiometric asymmetric aminohydroxylation was reported.78 Recently, it was found by Sharpless79 that through the combination of chloramine-T/Os04 catalyst with phthalazine ligands used in the asymmetric dihydroxylation reaction, catalytic asymmetric aminohydroxylation of olefins was realized in aqueous acetonitrile or tert-butanol (Scheme 3.3). The use of aqueous rerr-butanol is advantageous when the reaction product is not soluble. In this case, essentially pure products can be isolated by a simple filtration and the toluenesulfonamide byproduct remains in the mother liquor. A variety of olefins can be aminohydroxylated in this way (Table 3.1). The reaction is not only performed in aqueous medium but it is also not sensitive to oxygen. Electron-deficient olefins such as fumarate reacted similarly with high ee values. [Pg.59]

Dihydroxylation and asymmetric dihydroxylation of electronically deficient conjugate alkenes have been developed in aqueous media. These reactions were discussed in Chapter 3. [Pg.317]

More than sixty years ago, Criegee reported that the dihydroxylation of olefins by osmium tetroxide was accelerated by the addition of a tertiary amine.165 166 Later, this discovery prompted the study of asymmetric dihydroxylation, because the use of an optically active tertiary amine was expected to increase the reaction rate (kc > k0) and to induce asymmetry (Scheme 41).167... [Pg.232]

This report prompted further study of asymmetric dihydroxylation, and higher enantioselect-ivity has been realized with various C2- or quasi-C2-symmetric diamines as the chiral auxiliaries.168-174 One example reported by Tomioka and Koga is shown in Scheme 43.170 Although the reaction is highly enantioselective, it needs the use of stoichiometric 0s04 and chiral diamine, because the diamine coordinates Osvl ion strongly and retards its reoxidation to Osvm ion. [Pg.232]

Since Sharpless discovery of asymmetric dihydroxylation reactions of al-kenes mediated by osmium tetroxide-cinchona alkaloid complexes, continuous efforts have been made to improve the reaction. It has been accepted that the tighter binding of the ligand with osmium tetroxide will result in better stability for the complex and improved ee in the products, and a number of chiral auxiliaries have been examined in this effort. Table 4 11 (below) lists the chiral auxiliaries thus far used in asymmetric dihydroxylation of alkenes. In most cases, diamine auxiliaries provide moderate to good results (up to 90% ee). [Pg.223]

The major breakthrough in the catalytic asymmetric dihydroxylation reactions of olefins was reported by Jacobsen et al.55 in 1988. Combining 9-acetoxy dihydroquinidine as the chiral auxiliary with /V-methylmorphine TV-oxide as the secondary oxidant in aqueous acetone produced optically active diols in excellent yields, along with efficient catalytic turnover. [Pg.223]

These cinchona esters also effect asymmetric dihydroxylation of alkenes in reactions with an amine N-oxide as the stoichiometric oxidant and 0s04 as the catalyst. Reactions catalyzed by 1 direct attack to the re-face and those catalyzed by 2 direct attack with almost equal preference for the 5i-face. [Pg.238]

A more versatile method to use organic polymers in enantioselective catalysis is to employ these as catalytic supports for chiral ligands. This approach has been primarily applied in reactions as asymmetric hydrogenation of prochiral alkenes, asymmetric reduction of ketone and 1,2-additions to carbonyl groups. Later work has included additional studies dealing with Lewis acid-catalyzed Diels-Alder reactions, asymmetric epoxidation, and asymmetric dihydroxylation reactions. Enantioselective catalysis using polymer-supported catalysts is covered rather recently in a review by Bergbreiter [257],... [Pg.519]

About a decade after the discovery of the asymmetric epoxidation described in Chapter 14.2, another exciting discovery was reported from the laboratories of Sharpless, namely the asymmetric dihydroxylation of alkenes using osmium tetroxide. Osmium tetroxide in water by itself will slowly convert alkenes into 1,2-diols, but as discovered by Criegee [15] and pointed out by Sharpless, an amine ligand accelerates the reaction (Ligand-Accelerated Catalysis [16]), and if the amine is chiral an enantioselectivity may be brought about. [Pg.308]

Sharpless stoichiometric asymmetric dihydroxylation of alkenes (AD) was converted into a catalytic reaction several years later when it was combined with the procedure of Upjohn involving reoxidation of the metal catalyst with the use of N-oxides [24] (N-methylmorpholine N-oxide). Reported turnover numbers were in the order of 200 (but can be raised to 50,000) and the e.e. for /rara-stilbene exceeded 95% (after isolation 88%). When dihydriquinidine (vide infra) was used the opposite enantiomer was obtained, again showing that quinine and quinidine react like a pair of enantiomers, rather than diastereomers. [Pg.312]

Reactions have been carried out adjacent to the epoxide moiety in order to examine the effects, if any, that the epoxide has on subsequent reactions with respect to the regio- and stereochemical outcome. Dihydroxylation using osmium tetraoxide and Sharpless asymmetric dihydroxylation reactions have been extensively studied using substrates 29 and 31. Initial studies centred on the standard dihydroxylation conditions using AT-methylmorpholine-AT-oxide and catalytic osmium tetraoxide. The diastereomeric ratios were at best 3 2 for 29 and 2 1 for 31, indicating that the epoxide unit had very little influence on the stereochemical outcome of the reaction. This observation was not unexpected, since the epoxide moiety poses minimal steric demands (Scheme 21). [Pg.142]

The protected diol side-chain of 456 is introduced by asymmetric dihydroxylation and directs diastereoselectivity in the formation of 457 and 458 by lithiation. The most acidic position of 456, between the two methoxy groups, is first protected by silylation. Suzuki coupling of 459 with the boronic acid 460 gives the kinetic product 461—the more severe hindrance to bond rotation in this compound does not allow equilibration to the more stable atropisomer of the biaryl under the conditions of the reaction. [Pg.594]


See other pages where Asymmetric dihydroxylation reaction is mentioned: [Pg.377]    [Pg.675]    [Pg.681]    [Pg.125]    [Pg.127]    [Pg.297]    [Pg.97]    [Pg.105]    [Pg.56]    [Pg.153]    [Pg.6]    [Pg.46]    [Pg.235]    [Pg.237]    [Pg.238]    [Pg.120]    [Pg.222]    [Pg.223]    [Pg.229]    [Pg.261]    [Pg.704]    [Pg.221]    [Pg.249]    [Pg.2]    [Pg.42]    [Pg.739]    [Pg.740]    [Pg.34]    [Pg.451]    [Pg.50]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Asymmetric dihydroxylation

Asymmetrical dihydroxylation

Catalytic cycle asymmetric dihydroxylation reaction

Dihydroxylation reaction

Os-catalyzed asymmetric dihydroxylation (Sharpless reaction)

Reactions Sharpless asymmetric dihydroxylation

© 2024 chempedia.info