Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dimethyl sulfoxide nucleophilic substitution

Craig et al. demonstrated that the mechanical activation of a leaving group accelerates the nucleophilic substitution of dimethyl sulfoxide for substituted pyridines at square-planar pincer Pd(ll) metal centers (Figure 14). For the first time, they compared the dynamic SMFS behavior and stress-free kinetic data for bimolecular reactions. The stress-free dissociation rate constants of 1 x (2a)2 and 1 x (2b)2 extrapolated from the corresponding DFS are 0.7 0.4 and 20 3 s , respectively, which are in excellent agreement with the values determined by dynamic NMR (1 and 17 s , respectively). ... [Pg.3492]

The formation of the above anions ("enolate type) depend on equilibria between the carbon compounds, the base, and the solvent. To ensure a substantial concentration of the anionic synthons in solution the pA" of both the conjugated acid of the base and of the solvent must be higher than the pAT -value of the carbon compound. Alkali hydroxides in water (p/T, 16), alkoxides in the corresponding alcohols (pAT, 20), sodium amide in liquid ammonia (pATj 35), dimsyl sodium in dimethyl sulfoxide (pAT, = 35), sodium hydride, lithium amides, or lithium alkyls in ether or hydrocarbon solvents (pAT, > 40) are common combinations used in synthesis. Sometimes the bases (e.g. methoxides, amides, lithium alkyls) react as nucleophiles, in other words they do not abstract a proton, but their anion undergoes addition and substitution reactions with the carbon compound. If such is the case, sterically hindered bases are employed. A few examples are given below (H.O. House, 1972 I. Kuwajima, 1976). [Pg.10]

A AlI lation. 1-Substitution is favored when the indole ring is deprotonated and the reaction medium promotes the nucleophilicity of the resulting indole anion. Conditions which typically result in A/-alkylation are generation of the sodium salt by sodium amide in Hquid ammonia, use of sodium hydride or a similar strong base in /V, /V- dim ethyl form am i de or dimethyl sulfoxide, or the use of phase-transfer conditions. [Pg.85]

Nucleophilic Substitution Route. Commercial synthesis of poly(arylethersulfone)s is accompHshed almost exclusively via the nucleophilic substitution polycondensation route. This synthesis route, discovered at Union Carbide in the early 1960s (3,4), involves reaction of the bisphenol of choice with 4,4 -dichlorodiphenylsulfone in a dipolar aprotic solvent in the presence of an alkaUbase. Examples of dipolar aprotic solvents include A/-methyl-2-pyrrohdinone (NMP), dimethyl acetamide (DMAc), sulfolane, and dimethyl sulfoxide (DMSO). Examples of suitable bases are sodium hydroxide, potassium hydroxide, and potassium carbonate. In the case of polysulfone (PSE) synthesis, the reaction is a two-step process in which the dialkah metal salt of bisphenol A (1) is first formed in situ from bisphenol A [80-05-7] by reaction with the base (eg, two molar equivalents of NaOH),... [Pg.460]

Only relatively few nucleophilic substitution reactions at sulfur proceed with retention. Oae found that (R)-(+)-methyl p-tolyl sulfoxide exchanged 180 with dimethyl sulfoxide at 150 °C much faster than it racemized thus, the exchange took place with retention. A cyclic intermediate, 136, was proposed to account for this behavior12,147. The same sulfoxide was found to react with N, JV -ditosylsulfurdiimide, 137, with either retention or inversion depending on the reaction conditions. Christensen148 observed retention in benzene whereas Cram and coworkers149 found that inversion took place in pyridine. A four-membered ring intermediate, 138, was postulated to account for the retention, whereas a... [Pg.81]

Hydroxy-L-prolin is converted into a 2-methoxypyrrolidine. This can be used as a valuable chiral building block to prepare optically active 2-substituted pyrrolidines (2-allyl, 2-cyano, 2-phosphono) with different nucleophiles and employing TiQ as Lewis acid (Eq. 21) [286]. Using these latent A -acylimmonium cations (Eq. 22) [287] (Table 9, No. 31), 2-(pyrimidin-l-yl)-2-amino acids [288], and 5-fluorouracil derivatives [289] have been prepared. For the synthesis of p-lactams a 4-acetoxyazetidinone, prepared by non-Kolbe electrolysis of the corresponding 4-carboxy derivative (Eq. 23) [290], proved to be a valuable intermediate. 0-Benzoylated a-hydroxyacetic acids are decarboxylated in methanol to mixed acylals [291]. By reaction of the intermediate cation, with the carboxylic acid used as precursor, esters are obtained in acetonitrile (Eq. 24) [292] and surprisingly also in methanol as solvent (Table 9, No. 32). Hydroxy compounds are formed by decarboxylation in water or in dimethyl sulfoxide (Table 9, Nos. 34, 35). [Pg.124]

Such nucleophilic displacements are likely to be addition-elimination reactions, whether or not radical anions are also interposed as intermediates. The addition of methoxide ion to 2-nitrofuran in methanol or dimethyl sulfoxide affords a deep red salt of the anion 69 PMR shows the 5-proton has the greatest upfield shift, the 3- and 4-protons remaining vinylic in type.18 7 The similar additions in the thiophene series are less complete, presumably because oxygen is relatively electronegative and the furan aromaticity relatively low. Additional electronegative substituents increase the rate of addition and a second nitro group makes it necessary to use stopped flow techniques of rate measurement.141 In contrast, one acyl group (benzoyl or carboxy) does not stabilize an addition product and seldom promotes nucleophilic substitution by weaker nucleophiles such as ammonia. Whereas... [Pg.202]

Nucleophilic attack of trimethylamine at 1-fluoro-4-nitrobenzene in dimethyl sulfoxide yields the aryltrimethylammonium fluoride, which loses fluoromethanc with formation of the 4-ni-troaniline derivative 10.201 Kinetic measurements have shown that trimethylamine reacts much faster thaii aniline or diisopropylamine. With pyridine, no nucleophilic substitution occurs. [Pg.457]

There has been a review of die effects of high pressure on the substitution reactions of amines witii haloaromatic compounds, including polyhalobenzenes.17 Nucleophilic substiditions by amines often proceed readily hi dimethyl sulfoxide (DMSO). The pKa values, hi DMSO, have been reported for some ammonium ions derived from amines widely used as nucleophiles in 5nAt reactions.18 Correlations have been established19 between die oxidation potentials and the basicities of some arylamhie and diarylamine anions and die rate constants for dieir reactions with aiyl halides in DMSO. [Pg.243]

Data assembled by Parker (201 demonstrate these effects for bimolecular reactions involving sulfur nucleophiles and haloaliphatic substrates. As an illustration for the case of Reactions 4, the S 2 displacement of iodide from CH3I by SCN at 25°C is accelerated relative to its rate in water tty 0.2 log units in methanol, by 1.1 log units in 10% aqueous dimethyl sulfoxide (v/v), and tty approximately 2.4 log units in dimethyl formamide (DMF). Furthermore, the rates of bimolecular elimination and substitution of cyclohexyl bromide in the presence of thiophenolate at 25°C both increase by 2.7 log units when the solvent is changed from ethanol to dimethylfonnamide (20). [Pg.111]

Picosecond absorption spectroscopy was employed to study the dynamics of contact ion pairs produced upon the photolysis of substituted diphenylmethyl acetates in the solvents acetonitrile, dimethyl sulfoxide, and 2,2,2-trifluoroethanol.66 A review appeared of the equation developed by Mayr and co-workers log k = s(N + E), where k is the rate constant at 20 °C, s and N are nucleophile-dependent parameters, and is an electrophilicity parameter 67 This equation, originally developed for benzhydrylium ions and n-nucleophiles, has now been employed for a large number of different types of electrophiles and nucleophiles. The E, N, and s parameters now available can be used to predict the rates of a large number of polar organic reactions. Rate constants for the reactions of benzhydrylium ions with halide ions were obtained... [Pg.186]

The halogens (Cl, F) in the arene ligand of 125 can be smoothly substituted by nucleophilic groups such as MeO, PhS, OH, CN, or C5H10N (148). Nucleophilic substitution of halogens in the arene ligand of 125 has been used to prepare aromatic organoruthenium polymers such as 258 or 259 (Scheme 24). The metal-free polymer is obtained by arene displacement in acetonitrile or dimethyl sulfoxide (158). A new method for indole... [Pg.219]

Another class of solvents which presents environmental problems comprises the polar aprotic solvents, such as dimethylformamide and dimethyl sulfoxide, that are the solvents of choice for, e.g. many nucleophilic substitutions. They are high boiling and not easily removed by distillation. They are also water-miscible which enables their separation by washing with water. Unfortunately, this leads inevitably to contaminated aqueous effluent. [Pg.297]

Simple 2,2-dibutyl-l,3,2-dioxastannolanes form solid complexes of monomer units with certain nucleophiles, such as pyridine and dimethyl sulfoxide, that have 1 1 stoichiometry and pentacoordinate tin atoms.62 Such complexes are less stable for more-substituted stannylene acetals, such as those derived from carbohydrates.62 Unfortunately, the precise structures of these complexes have not yet been defined. Addition of nucleophiles to solutions of stannylene acetals in nonpolar solvents has been found to markedly increase the rates of reaction with electrophiles,63 and transient complexes of this type are likely intermediates. Similar rate enhancements were observed in reactions of tributylstannyl ethers.57 Tetrabu-tylammonium iodide was the nucleophile used first,57 but a wide variety of nucleophiles has been used subsequently tetraalkylammonium halides, jV-methylimidazole,18 and cesium fluoride64,65 have been used the most. Such nucleophilic solvents as N,N-dimethylformamide and ethers probably also act as added nucleophiles. As well as increasing the rates of reaction, in certain cases the added nucleophiles reverse the regioselectivity from that observed in nonpolar solvents.18,19... [Pg.32]

Basicity is measured in terms of a thermodynamic equilibrium involving coordination with H+. Nucleophilicity is measured in terms of the rates of reaction with the most varied electrophiles. Hence, although a correlation between basicity and nucleophilicity is often found (generally Sn reactions are faster with the stronger bases), it is by no means a priori necessary. An example of a direct simple relationship between nucleophilicity and basicity in Sn2 reactions is the reaction of 9-substituted fluorenide ions with (chloromethyl)benzene in dimethyl sulfoxide solution [595]. [Pg.244]

RCO , an indifferent nucleophile in prohc solvents, enjoys a large rate enhancement, permitting rapid alkylation with haloalkanes in hexamethylphosphoric triamide [301, 302], When the Williamson ether synthesis is carried out in dimethyl sulfoxide [303], the yields are raised and the reaction time shortened. Displacements on unreactive haloarenes become possible [304] (conversion of bromobenzene to tert-butoxybenzene with tert-C UgO in dimethyl sulfoxide in 86% yield at room temperature). The fluoride ion, a notoriously poor nucleophile or base in protic solvents, reveals its hidden capabilities in dipolar non-HBD solvents and is a powerful nucleophile in substitution reactions on carbon [305],... [Pg.251]

Addition of anionic nucleophiles to alkenes and to heteronuclear double bond systems (C=0, C=S) also lies within the scope of this Section. Chloride and cyanide ions are effieient initiators of the polymerization and copolymerization of acrylonitrile in dipolar non-HBD solvents, as reported by Parker [6], Even some 1,3-dipolar cycloaddition reactions leading to heterocyclic compounds are often better carried out in dipolar non-HBD solvents in order to increase rates and yields [311], The rate of alkaline hydrolysis of ethyl and 4-nitrophenyl acetate in dimethyl sulfoxide/water mixtures increases with increasing dimethyl sulfoxide concentration due to the increased activity of the hydroxide ion. This is presumably caused by its reduced solvation in the dipolar non-HBD solvent [312, 313]. Dimethyl sulfoxide greatly accelerates the formation of oximes from carbonyl compounds and hydroxylamine, as shown for substituted 9-oxofluorenes [314]. Nucleophilic attack on carbon disulfide by cyanide ion is possible only in A,A-dimethylformamide [315]. The fluoride ion, dissolved as tetraalkylammo-nium fluoride in dipolar difluoromethane, even reacts with carbon dioxide to yield the fluorocarbonate ion, F-C02 [840]. [Pg.254]

Intermolecular Nucleophilic Substitution with Heteroatom Nucleophiles. A patent issued in 1965 claims substitution for fluoride on fluorobenzene-Cr(CO)3 in dimethyl sulfoxide (DMSO) by a long list of nucleophiles including alkoxides (from simple alcohols, cholesterol, ethylene glycol, pinacol, and dihydroxyacetone), carboxylates, amines, and carbanions (from triphenyhnethane, indene, cyclohexanone, acetone, cyclopentadiene, phenylacetylene, acetic acid, and propiolic acid). In the reaction of methoxide with halobenzene-Cr(CO)3, the fluorobenzene complex is ca. 2000 times more reactive than the chlorobenzene complex. The difference is taken as evidence for a rate-limiting attack on the arene ligand followed by fast loss of halide the concentration of the cyclohexadienyl anion complex does not build up. In the reaction of fluorobenzene-Cr(CO)3 with amine nucleophiles, the coordinated aniline product appears rapidly at 25 °C, and a carefiil mechanistic study suggests that the loss of halide is now rate limiting. [Pg.3314]


See other pages where Dimethyl sulfoxide nucleophilic substitution is mentioned: [Pg.329]    [Pg.8]    [Pg.967]    [Pg.329]    [Pg.187]    [Pg.217]    [Pg.71]    [Pg.130]    [Pg.218]    [Pg.149]    [Pg.229]    [Pg.46]    [Pg.336]    [Pg.967]    [Pg.261]    [Pg.261]    [Pg.346]    [Pg.213]    [Pg.362]    [Pg.482]    [Pg.251]    [Pg.548]    [Pg.967]    [Pg.292]   
See also in sourсe #XX -- [ Pg.224 ]




SEARCH



6,12-Dimethyl-substituted

Dimethyl sulfoxide as solvent in nucleophilic substitution reactions

Sulfoxides dimethyl

Sulfoxides dimethyl sulfoxide

Sulfoxides nucleophiles

Sulfoxides nucleophilic substitution

© 2024 chempedia.info