Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dilute solutions separation from

The term osmosis is used to describe spontaneous flow of water into a solution, or from a more dilute to a more concentrated solution, separated from each other by a suitable membrane. To obtain fresh water from sea water, the flow must be reversed, from the solution into a fresh water stream. Hence the term used to describe this process is reverse osmosis. ... [Pg.195]

Addition of a low viscosity hydrocarbon solvent often extracts the oil from the water the extract layer of solvent and solute separates from the water. The large amount of solvent needed to separate emulsions of water in a viscous heavy oil is uneconomic because of the dilute solution needed to obtain a continuous water phase. Addition of solvent, possibly up to an equal amount, is reasonable and is desirable to reduce the viscosity sufficiently to pump and transport the heavy oil. A cheap aliphatic solvent— e.g.9 kerosene—is preferable, but bituminous oil fractions are much more soluble in aromatic solvents, particularly at temperatures near the ambient. However, the water and solid particles are not at acceptable limits even after much dilution, especially in the presence of fine particles as in some crudes from California and Venezuela and particularly from tar sands as those in Athabasca (Alberta, Canada). [Pg.118]

The phenylarsonic acid should separate from the cold stirred solution within 10-20 minutes. If separation does not occur (due to the addition of too much acid), add a few drops of dilute aqueous sodium hydroxide and again bring the solution very carefully to the desired pH. [Pg.313]

The chief uses of chromatographic adsorption include (i) resolution of mixtures into their components (Li) purification of substances (including technical products from their contaminants) (iii) determination of the homogeneity of chemical substances (iv) comparison of substances suspected of being identical (v) concentration of materials from dilute solutions (e.g., from a natural source) (vi) quantita tive separation of one or more constituents from a complex mixture and (vii) identi-1 ig- II, 16, 3. gcajjQij and control of technical products. For further details, the student is referred to specialised works on the subject. ... [Pg.158]

When the derivative is appreciably soluble in ether, the following alternative procedure may be employed. Dissolve the cold leaction mixture in about 60 ml. of ether, wash it with 20-30 ml. of 10 per cent, hydrochloric acid (to remove the excess of base), followed by 20 ml. of 10 per cent, sodium hydroxide solution, separate the ether layer, and evaporate the solvent [CAUTION/]. Recrystallise the residue from dilute alcohol. [Pg.362]

Suspend in a round-bottomed flask 1 g. of the substance in 75-80 ml. of boihng water to which about 0 -5 g. of sodium carbonate crystals have been added, and introduce slowly 4 g. of finely-powdered potassium permanganate. Heat under reflux until the purple colour of the permanganate has disappeared (1-4 hours). Allow the mixture to cool and carefully acidify with dilute sulphuric acid. Heat the mixture under reflux for a further 30 minutes and then cool. Remove any excess of manganese dioxide by the addition of a little sodium bisulphite. Filter the precipitated acid and recrystallise it from a suitable solvent (e.g., benzene, alcohol, dilute alcohol or water). If the acid does not separate from the solution, extract it with ether, benzene or carbon tetrachloride. [Pg.520]

Separations based upon differences in the chemical properties of the components. Thus a mixture of toluene and anihne may be separated by extraction with dilute hydrochloric acid the aniline passes into the aqueous layer in the form of the salt, anihne hydrochloride, and may be recovered by neutralisation. Similarly, a mixture of phenol and toluene may be separated by treatment with dilute sodium hydroxide. The above examples are, of comse, simple apphcations of the fact that the various components fah into different solubihty groups (compare Section XI,5). Another example is the separation of a mixture of di-n-butyl ether and chlorobenzene concentrated sulphuric acid dissolves only the w-butyl other and it may be recovered from solution by dilution with water. With some classes of compounds, e.g., unsaturated compounds, concentrated sulphuric acid leads to polymerisation, sulphona-tion, etc., so that the original component cannot be recovered unchanged this solvent, therefore, possesses hmited apphcation. Phenols may be separated from acids (for example, o-cresol from benzoic acid) by a dilute solution of sodium bicarbonate the weakly acidic phenols (and also enols) are not converted into salts by this reagent and may be removed by ether extraction or by other means the acids pass into solution as the sodium salts and may be recovered after acidification. Aldehydes, e.g., benzaldehyde, may be separated from liquid hydrocarbons and other neutral, water-insoluble hquid compounds by shaking with a solution of sodium bisulphite the aldehyde forms a sohd bisulphite compound, which may be filtered off and decomposed with dilute acid or with sodium bicarbonate solution in order to recover the aldehyde. [Pg.1091]

Ck)ol the alkaline solution resulting from the distillation of the volatile neutral compounds, make it acid to litmus with dilute sulphuric acid, and add an excess of solid sodium bicarbonate. Extract this bicarbonate solution with two 20 ml. portions of ether remove the ether from the combined ether extracts and identify the residual phenol (or enol). Then acidify the bicarbonate solution cautiously with dilute sulphiu-ic acid if an acidic compound separates, remove it by two extractions with 20 ml. portions of ether if the acidified solution remains clear, distil and collect any water-soluble, volatile acid in the distillate. Characterise the acid as under 2. [Pg.1098]

To isolate polymer chains from one another, we consider a solution which is sufficiently dilute that the domains of the individual polymer molecules are well separated from each other. For the present, we assume the solvent has no influence on the polymer but merely supports the molecule. In fact, this is not generally the case, although it can be achieved by proper choice of solvent or temperature. [Pg.48]

It is convenient to begin by backtracking to a discussion of AS for an athermal mixture. We shall consider a dilute solution containing N2 solute molecules, each of which has an excluded volume u. The excluded volume of a particle is that volume for which the center of mass of a second particle is excluded from entering. Although we assume no specific geometry for the molecules at this time, Fig. 8.10 shows how the excluded volume is defined for two spheres of radius a. The two spheres are in surface contact when their centers are separated by a distance 2a. The excluded volume for the pair has the volume (4/3)7r(2a), or eight times the volume of one sphere. This volume is indicated by the broken line in Fig. 8.10. Since this volume is associated with the interaction of two spheres, the excluded volume per sphere is... [Pg.554]

Analyses of alloys or ores for hafnium by plasma emission atomic absorption spectroscopy, optical emission spectroscopy (qv), mass spectrometry (qv), x-ray spectroscopy (see X-ray technology), and neutron activation are possible without prior separation of hafnium (19). Alternatively, the combined hafnium and zirconium content can be separated from the sample by fusing the sample with sodium hydroxide, separating silica if present, and precipitating with mandelic acid from a dilute hydrochloric acid solution (20). The precipitate is ignited to oxide which is analy2ed by x-ray or emission spectroscopy to determine the relative proportion of each oxide. [Pg.443]

The most common oxidation state of niobium is +5, although many anhydrous compounds have been made with lower oxidation states, notably +4 and +3, and Nb can be reduced in aqueous solution to Nb by zinc. The aqueous chemistry primarily involves halo- and organic acid anionic complexes. Virtually no cationic chemistry exists because of the irreversible hydrolysis of the cation in dilute solutions. Metal—metal bonding is common. Extensive polymeric anions form. Niobium resembles tantalum and titanium in its chemistry, and separation from these elements is difficult. In the soHd state, niobium has the same atomic radius as tantalum and essentially the same ionic radius as well, ie, Nb Ta = 68 pm. This is the same size as Ti ... [Pg.20]

Production and Economic Aspects. Thallium is obtained commercially as a by-product in the roasting of zinc, copper, and lead ores. The thallium is collected in the flue dust in the form of oxide or sulfate with other by-product metals, eg, cadmium, indium, germanium, selenium, and tellurium. The thallium content of the flue dust is low and further enrichment steps are required. If the thallium compounds present are soluble, ie, as oxides or sulfates, direct leaching with water or dilute acid separates them from the other insoluble metals. Otherwise, the thallium compound is solubilized with oxidizing roasts, by sulfatization, or by treatment with alkaU. The thallium precipitates from these solutions as thaUium(I) chloride [7791 -12-0]. Electrolysis of the thaUium(I) sulfate [7446-18-6] solution affords thallium metal in high purity (5,6). The sulfate solution must be acidified with sulfuric acid to avoid cathodic separation of zinc and anodic deposition of thaUium(III) oxide [1314-32-5]. The metal deposited on the cathode is removed, kneaded into lumps, and dried. It is then compressed into blocks, melted under hydrogen, and cast into sticks. [Pg.467]

The need for low levels of 3-isomer in 2-thiophenecarboxyhc acid [527-72-0] which is produced by oxidation of 2-acetylthiophene [88-15-3] and used in dmg appHcations, has been the driving force to find improved acylation catalysts. The most widely used oxidant is sodium hypochlorite, which produces a quantity of chloroform as by-product, a consequence that detracts from its simplicity. Separation of the phases and acidification of the aqueous phase precipitate the product which is filtered off. Alternative oxidants have included sodium nitrite in acid solution, which has some advantages, but, like the hypochlorite method, also involves very dilute solutions and low throughput volumes. [Pg.21]

These species are also unusual iu that they are extremely hydrophobic anions which form very strong conjugate acids. This unique combination of features leads to a number of potential uses such as the extraction of organic compounds from extremely dilute solutions and the isolation of metal cations, including the quantitative separation of radionucUdes, eg, Cs (192). [Pg.246]

The production of many high value chemicals requires maximizing separation from a relatively dilute solution. It is common in such instances to use a combination of methods to reduce solute solubiHty in the feed solution. Figure 5, for example, illustrates that the addition of methanol to a saturated aqueous solution of L-serine can reduce solubiHty by more than an order of magnitude. [Pg.340]

Selectivity. The relative separation, or selectivity, Ot of a solvent is the ratio of two components in the extraction-solvent phase divided by the ratio of the same components in the feed-solvent phase. The separation power of a hquid-liquid system is governed by the deviation of Ot from unity, analogous to relative volatility in distillation. A relative separation Ot of 1.0 gives no separation of the components between the two liquid phases. Dilute solute concentrations generally give the highest relative separation factors. [Pg.1453]

Uraizee and Narsimhan [Sep. Sci. Technol., 30(6), 847 (1995)] have provided a model for the continuous separation of proteins from dilute solutions. Although their work is focused on protein separation, the model should find general application to other separations. [Pg.2021]


See other pages where Dilute solutions separation from is mentioned: [Pg.876]    [Pg.537]    [Pg.143]    [Pg.148]    [Pg.302]    [Pg.124]    [Pg.11]    [Pg.338]    [Pg.101]    [Pg.260]    [Pg.380]    [Pg.432]    [Pg.240]    [Pg.650]    [Pg.717]    [Pg.884]    [Pg.901]    [Pg.909]    [Pg.985]    [Pg.456]    [Pg.75]    [Pg.25]    [Pg.154]    [Pg.476]    [Pg.22]    [Pg.67]    [Pg.457]    [Pg.149]    [Pg.382]    [Pg.367]    [Pg.1141]    [Pg.190]   
See also in sourсe #XX -- [ Pg.845 ]




SEARCH



Diluted solutions

Separation dilution

Separators solutions

Solute separation

Solution diluting

Solution separations

Solutions dilution

© 2024 chempedia.info