Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion membrane permeability

A buffer solution containing urea flows along one side of a flat membrane and the same buffer solution without urea flows along the other side of the membrane, at an equal flow rate. At different flow rates the overall mass transfer coefficients were obtained as shown in Table P8.1. When the liquid film mass transfer coefficients of both sides increase by one-third power ofthe averaged flow rate, estimate the diffusive membrane permeability. [Pg.142]

CM2 are the solute concentrations (kmol m-3) in the feed and dialysate at the membrane surfaces, respectively and Cand C 2 are the solute concentrations in the membrane (kmol m-3) at its surfaces on the feed side and the dialysate side, respectively. The relationships between CM1 and Cj, and between Cj 2 and CM2> are given by the solute solubility in the membrane. kM is the diffusive membrane permeability (m h 1), and should be equal to DM/xM, where DM is the diffusivity of the solute through the membrane (m2h 1) and xM is the membrane thickness (m). Dm varies with membranes and with solutes for a given membrane, DM usually decreases with increasing size of solute molecules and increases with temperature. [Pg.135]

Electric membrane processes, including electroosmosis, electrodialysis, and membrane electrolysis, are studied for different applications along the power generation cycle (Andalaft et al. 1997 Hobbs 1999 Hegazy et al. 1999). The novel anion exchange membrane was applied to separate and C1 ions by electrodialysis (Inoue et al. 2004). The membrane exhibited high selectivity for iodine ions over chlorine ions, and the ratio of electroconductive membrane permeabilities of 1 and C1 was 6.2, while the diffusion membrane permeabilities of the two components were almost the same. [Pg.5]

Although microporous membranes are a topic of research interest, all current commercial gas separations are based on the fourth type of mechanism shown in Figure 36, namely diffusion through dense polymer films. Gas transport through dense polymer membranes is governed by equation 8 where is the flux of component /,andare the partial pressure of the component i on either side of the membrane, /is the membrane thickness, and is a constant called the membrane permeability, which is a measure of the membrane s ability to permeate gas. The ability of a membrane to separate two gases, i and is the ratio of their permeabilities,a, called the membrane selectivity (eq. 9). [Pg.83]

The membranes of nerve cells contain well-studied ion channels that are responsible for the action potentials generated across the membrane. The activity of some of these channels is controlled by neurotransmitters hence, channel activity can be regulated. One ion can regulate the activity of the channel of another ion. For example, a decrease of Ca + concentration in the extracellular fluid increases membrane permeability and increases the diffusion of Na+. This depolarizes the membrane and triggers nerve discharge, which may explain the numbness, tinghng, and muscle cramps symptomatic of a low level of plasma Ca. ... [Pg.424]

Diffusion-mediated release of root exudates is likely to be affected by root zone temperature due to temperature-dependent changes in the speed of diffusion processes and modifications of membrane permeability (259,260). This might explain the stimulation of root exudation in tomato and clover at high temperatures, reported by Rovira (261), and also the increase in exudation of. sugars and amino acids in maize, cucumber, and strawberry exposed to low-temperature treatments (5-10°C), which was mainly attributed to a disturbance in membrane permeability (259,262). A decrease of exudation rates at low temperatures may be predicted for exudation processes that depend on metabolic energy. This assumption is supported by the continuous decrease of phytosiderophore release in Fe-deficient barley by decreasing the temperature from 30 to 5°C (67). [Pg.74]

FIG. 14 A model for the uptake of weakly basic compounds into lipid bilayer membrane (inside acidic) in response to the pH difference. For compounds with appropriate pki values, a neutral outside pH results in a mixture of both the protonated form AH (membrane impermeable) and unprotonated form A (membrane permeable) of the compound. The unprotonated form diffuse across the membrane until the inside and outside concentrations are equal. Inside the membrane an acidic interior results in protonation of the neutral unprotonated form, thereby driving continued uptake of the compound. Depending on the quantity of the outside weak base and the buffering capacity of the inside compartment, essentially complete uptake can usually be accomplished. The ratio between inside and outside concentrations of the weakly basic compound at equilibrum should equal the residual pH gradient. [Pg.822]

The reported (14) mechanisms of action of allelochemlcals Include effects on root ultrastructure and subsequent Inhibition of Ion absorption and water uptake, effects on hormone-induced growth, alteration of membrane permeability, changes In lipid and organic acid metabolism, inhibition of protein synthesis and alteration of enzyme activity, and effects on stomatal opening and on photosynthesis. Reduced leaf water potential Is one result of treatment with ferulic and p-coumaric acids (15). Colton and Einhellig (16) found that aqueous extracts of velvetleaf (Abutllon theophrastl Medic.) Increased diffusive resistance In soybean fGlycine max. (L.) Merr.] leaves, probably as a result of stomatal closure. In addition, there was evidence of water stress and reduced quantities of chlorophyll In Inhibited plants. [Pg.198]

In the transport across a phospholipid bilayer by passive diffusion, the permeability of the neutral form of a molecule is 10X times greater than that of the charged form. For the epithelium, the discrimination factor is 105. The basement membrane (Fig. 2.5) allows passage of uncharged molecules more readily than charged species by a factor of 10 [76]. [Pg.17]

The in vitro measurements of permeability by the cultured-cell or PAMPA model underestimate true membrane permeability, because of the UWL, which ranges in thickness from 1500 to 2500 pm. The corresponding in vivo value is 30-100 pm in the GIT and nil in the BBB (Table 7.22). The consequence of this is that highly permeable molecules are (aqueous) diffusion limited in the in vitro assays, whereas the membrane-limited permeation is operative in the in vivo case. Correcting the in vitro data for the UWL effect is important for both GIT and BBB absorption modeling. [Pg.236]

Precellular solute ionization dictates membrane permeability dependence on mucosal pH. Therefore, lumenal or cellular events that affect mucosal microclimate pH may alter the membrane transport of ionizable solutes. The mucosal microclimate pH is defined by a region in the neighborhood of the mucosal membrane in which pH is lower than in the lumenal fluid. This is the result of proton secretion by the enterocytes, for which outward diffusion is slowed by intestinal mucus. (In fact, mucosal secretion of any ion coupled with mucus-restricted diffusion will provide an ionic microclimate.) Important differences in solute transport between experimental systems may be due to differences in intestinal ions and mucus secretion. It might be anticipated that microclimate pH effects would be less pronounced in epithelial cell culture (devoid of goblet cells) transport studies than in whole intestinal tissue. [Pg.174]

The coupled processes described by Eqs. (8), (14), (17), and (22) can be added in (20) as parallel solute transport pathways across the membrane. The phenomenological coefficients (Ly) describe the membrane permeability by these pathways [potential-dependent, Eq. (8) via membrane lipid partition and diffusion, Eq. (14) carrier-mediated, Eq. (17) and convectively coupled, Eq. (22)]. These pathways define parallel resistances through the intestinal barrier in series with precellular resistances to solute transport. [Pg.191]

JH Kou, D Fleisher, GL Amidon. Calculation of the aqueous diffusion layer resistance for absorption in a tube Application to intestinal membrane permeability determination. Pharm Res 8 298-305, 1991. [Pg.196]

Figure 1 General pathways through which molecules can actively or passively cross a monolayer of cells. (A) Endocytosis of solutes and fusion of the membrane vesicle with the opposite plasma membrane in an active process called transcytosis. (B) Similar to A, but the solute associates with the membrane via specific (e.g., receptor) or nonspecific (e.g., charge) interactions. (C) Passive diffusion between the cells through the paracellular space. (C, C") Passive diffusion (C ) through the cell membranes and cytoplasm or (C") via partitioning into and lateral diffusion within the cell membrane. (D) Active or carrier-mediated transport of an otherwise poorly membrane permeable solute into and/or out of a cellular barrier. Figure 1 General pathways through which molecules can actively or passively cross a monolayer of cells. (A) Endocytosis of solutes and fusion of the membrane vesicle with the opposite plasma membrane in an active process called transcytosis. (B) Similar to A, but the solute associates with the membrane via specific (e.g., receptor) or nonspecific (e.g., charge) interactions. (C) Passive diffusion between the cells through the paracellular space. (C, C") Passive diffusion (C ) through the cell membranes and cytoplasm or (C") via partitioning into and lateral diffusion within the cell membrane. (D) Active or carrier-mediated transport of an otherwise poorly membrane permeable solute into and/or out of a cellular barrier.
Several mechanisms are involved in the permeability through Caco-2 cells. In order to obtain a more pure measure of membrane permeability, an experimental method based on ghost erythrocytes (red blood cells which have been emptied of their intracellular content) and diffusion constant measurements using nuclear magnetic resonance (NMR) has been proposed [108]. [Pg.13]


See other pages where Diffusion membrane permeability is mentioned: [Pg.135]    [Pg.140]    [Pg.264]    [Pg.271]    [Pg.273]    [Pg.325]    [Pg.141]    [Pg.240]    [Pg.247]    [Pg.249]    [Pg.324]    [Pg.428]    [Pg.233]    [Pg.135]    [Pg.140]    [Pg.264]    [Pg.271]    [Pg.273]    [Pg.325]    [Pg.141]    [Pg.240]    [Pg.247]    [Pg.249]    [Pg.324]    [Pg.428]    [Pg.233]    [Pg.295]    [Pg.230]    [Pg.358]    [Pg.9]    [Pg.105]    [Pg.421]    [Pg.51]    [Pg.819]    [Pg.824]    [Pg.827]    [Pg.56]    [Pg.122]    [Pg.202]    [Pg.211]    [Pg.169]    [Pg.173]    [Pg.475]    [Pg.571]    [Pg.32]    [Pg.11]    [Pg.81]    [Pg.345]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Diffusion permeability

Membrane diffusivity

Membranes diffusion

Membranes, permeable

© 2024 chempedia.info