Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion layer mechanical properties

Thin-film XRD is important in many technological applications, because of its abilities to accurately determine strains and to uniquely identify the presence and composition of phases. In semiconduaor and optical materials applications, XRD is used to measure the strain state, orientation, and defects in epitaxial thin films, which affect the film s electronic and optical properties. For magnetic thin films, it is used to identify phases and to determine preferred orientations, since these can determine magnetic properties. In metallurgical applications, it is used to determine strains in surfiice layers and thin films, which influence their mechanical properties. For packaging materials, XRD can be used to investigate diffusion and phase formation at interfaces... [Pg.199]

To design the optimal diffusion layer for a specific fuel cell system, it is important to be able to measure and understand all the parameters and characteristics that have a direct influence on the performance of the diffusion layers. This section will discuss in detail some of the most important properties that affect the diffusion layers, such as thickness, hydrophobicity and hydrophilicity, porosity and permeability (for both gas and liquids), electrical and thermal conductivity, mechanical properties, durability, and flow... [Pg.248]

As stated earlier, CEP and CC are the most common materials used in the PEM and direct liquid fuel cell due fo fheir nature, it is critical to understand how their porosity, pore size distribution, and capillary flow (and pressures) affecf fhe cell s overall performance. In addition to these properties, pressure drop measurements between the inlet and outlet streams of fuel cells are widely used as an indication of the liquid and gas transport within different diffusion layers. In fhis section, we will discuss the main methods used to measure and determine these properties that play such an important role in the improvement of bofh gas and liquid transport mechanisms. [Pg.255]

Through the use of x-ray-induced photoelectron spectroscopy (XPS), Schulze et al. [259] were able to demonstrate that the PTFE particles, which are coated on the diffusion layers, decomposed after fuel cell testing for more than 1,600 hours. This resulted in a change of the hydrophobic properties of the DL. Unfortunately, the mechanism behind the decomposition of PTFE was not explained. [Pg.280]

Purpose of this work was to study the structure, phase composition and mechanical properties of surface diffusion layers formed in the preliminary cold deformed a-Fe and Fe-Ni alloys after nitriding. [Pg.491]

Additional drawbacks to the use of polyimide insulators for the fabrication of multilevel structures include self- or auto-adhesion. It has been demonstrated that the interfacial strength of polyimide layers sequentially cast and cured depends on the interdiffusion between layers, which in turn depends on the cure time and temperature for both the first layer (Tj) and the combined first and second layers (T2) [3]. In this work, it was shown that unusually high diffusion distances ( 200 nm) were required to achieve bulk strength [3]. For T2 > Tj, the adhesion decreased with increasing T. However, for T2 < Tj and Tj 400 °C, the adhesion between the layers was poor irrespective of T2. Consequently, it is of interest to combine the desirable characteristics of polyimide with other materials in such a way as to produce a low stress, low dielectric constant, self-adhering material with the desirable processabiHty and mechanical properties of polyimide. [Pg.64]

Alteration of this epoxy structure is the result of the fact that the epoxy molecules are both reacting and diffusing at the same time. This process forms a concentration gradient with a high epoxy monomer concentration at the surface which gradually reduces to the bulk concentration away from the surface. The properties of an epoxy with an excess of resin can be quite different from the stoichiometric amount. Figure 2, for example, illustrated the alteration of cured epoxy mechanical properties with epoxy/amine ratio. Excess epoxy or less than the stoichiometric amount of amine produces a brittle material if the mixture is cured in the same manner as the stoichiometric amount (Fig. 2). The stoichiometric sample has the lowest modulus while excess amine produces increased brittleness. The potential for variation in local properties within the epoxy due to the presence of a 200 nm or less layer must be considered. [Pg.16]

However, during long exposures to medium-temperature operating conditions, e.g. 1000°C, spinel formation is certainly expected. Wang etal.60 demonstrated this for the Ni-alumina system, showing the diffusion of Ni atoms to the free surface of the nanocomposite, followed by the formation of a nickel spinel surface coating which then limits the kinetics of subsequent oxidation. In this case the formation of a spinel surface layer may be beneficial to mechanical properties, since the reaction results in a volume increase, and the formation of compressive residual stresses. An analogous behavior was reported for ceramic particle nanocomposites, where oxidation of SiC particles results in an increase in volume and compressive residual stresses.61... [Pg.303]

Synthetic polymers are widely applied to modify the surface properties of materials, and their adsorption mechanism is very different from small ions or molecules discussed in previous sections. Moreover, special methods are applied to study polymer adsorption, thus, polymer adsorption became a separate branch of colloid chemistry. Polymers that carry ionizable groups are referred to as polyelectrolytes. Their adsorption behavior is more sensitive to surface charging than adsorption of neutral polymers. Polyelectrolytes are strong or weak electrolytes, and the dissociation degree of weak polyelectrolytes is a function of the pH. The small counterions form a diffuse layer similar to that formed around a micelle of ionic surfactant. [Pg.503]

Typically, chemically modified surface layers involve thicknesses ranging from less than 1 micrometer(H) up to 20H-, so the overall mechanical properties of the treated objects are hardly affected by the process. Even if one limits the discussion to materials containing C-H bonds, practically all engineering plastics are covered except pure fluorocarbons and some silicones. Clearly, various gases can react with the carbon-hydrogen bonds on the surface of a plastic article and can reduce the diffusion coefficient of penetrants in the material. The choice of sulfonation as the preferred treatment, therefore, is not based solely on the ability to modify transport properties. [Pg.267]

Thus, the important features of the structural-mechanical barrier are the rheological properties (See Chapter IX,1,3) of interfacial layers responsible for thermodynamic (elastic) and hydrodynamic (increased viscosity) effects during stabilization. The elasticity of interfacial layers is determined by forces of different nature. For dense adsorption layers this may indeed be the true elasticity typical for the solid phase and stipulated by high resistance of surfactant molecules towards deformation due to changes in interatomic distances and angles in hydrocarbon chains. In unsaturated (diffuse) layers such forces may be of an entropic nature, i.e., they may originate from the decrease in the number of possible conformations of macromolecules in the zone of contact or may be caused by an increase in osmotic pressure in this zone due to the overlap between adsorption layers (i.e., caused by a decrease in the concentration of dispersion medium in the zone of contact). [Pg.558]

Some consequences which result from the proposed models of equilibrium surface layers are of special practical importance for rheological and dynamic surface phenomena. For example, the rate of surface tension decrease for the diffusion-controlled adsorption mechanism depends on whether the molecules imdergo reorientation or aggregation processes in the surface layer. This will be explained in detail in Chapter 4. It is shown that the elasticity modulus of surfactant layers is very sensitive to the reorientation of adsorbed molecules. For protein surface layers there are restructuring processes at the surface that determine adsorption/desorption rates and a number of other dynamic and mechanical properties of interfacial layers. [Pg.180]


See other pages where Diffusion layer mechanical properties is mentioned: [Pg.32]    [Pg.270]    [Pg.430]    [Pg.45]    [Pg.114]    [Pg.277]    [Pg.261]    [Pg.67]    [Pg.121]    [Pg.283]    [Pg.430]    [Pg.6]    [Pg.481]    [Pg.125]    [Pg.335]    [Pg.292]    [Pg.293]    [Pg.110]    [Pg.283]    [Pg.444]    [Pg.600]    [Pg.127]    [Pg.3]    [Pg.192]    [Pg.314]    [Pg.67]    [Pg.206]    [Pg.620]    [Pg.407]    [Pg.509]    [Pg.150]    [Pg.151]    [Pg.173]    [Pg.161]    [Pg.279]    [Pg.450]   
See also in sourсe #XX -- [ Pg.276 , Pg.277 ]




SEARCH



Diffuse layer

Diffusion layer

Diffusion properties

Layer properties

© 2024 chempedia.info