Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion bodies

Equation 4.2 can take various forms, depending upon the behavior of D. The simplest case is when D is constant. However, as discussed below, D may be a function of concentration, particularly in highly concentrated solutions where the interactions between solute atoms are significant. Also, D may be a function of time for example, when the temperature of the diffusing body changes with time. D may also depend upon the direction of the diffusion in anisotropic materials. [Pg.78]

The diffusivity tensor has special forms for particular choices of coordinate axes if the diffusing body itself has special symmetry (e.g., if it is crystalline). Neumann s principle states ... [Pg.90]

It has been almost two centuries since the first reports on the interaction between iodine and starch to produce a blue color, and more than fifty years since the discovery of the complexation between aliphatic alcohols and starch that revealed this polysaccharide to have a linear and a branched component. A large and diffuse body of published work exists on the interaction of starch and its components with other molecules and with ionic substances. Two closely related chapters in this volume, by Tomasik (Cracow, Poland) and Schilling (Ames, Iowa), provide comprehensive accounts of the extensive literature on complexes of starch with inorganic and with organic guests. [Pg.486]

The structure of the assembly of molecules or ions which we call a critical nucleus is not known, and it is too small to observe directly. It could be a miniature crystal, nearly perfect in form. On the other hand, it could be a rather diffuse body with molecules or solvated ions in a state not too different from that in the bulk fluid, with no clearly defined surface. The morphology of very small atomic clusters has been discussed by Hoare and Mclnnes (1976). [Pg.182]

The Radiello type sampler consisted of the Radiello Diffusive Sampler (Code 120 Diffusive Body). The sampling method employed followed that described in the Radiello Manual. The sampling media consisted of the FSTM media and was analyzed by the same method employed for the Anasorb media. [Pg.260]

Affinity at reaction stage r Acceleration Activity of species a Left Cauchy-Green tensor Body force per unit mass Diffusive body force Right Cauchy-Green tensor Mass-molar concentration Mass concentration of species a Mass-energy flux of the system... [Pg.400]

The cleaning process proceeds by one of three primary mechanisms solubilization, emulsification, and roll-up [229]. In solubilization the oily phase partitions into surfactant micelles that desorb from the solid surface and diffuse into the bulk. As mentioned above, there is a body of theoretical work on solubilization [146, 147] and numerous experimental studies by a variety of spectroscopic techniques [143-145,230]. Emulsification involves the formation and removal of an emulsion at the oil-water interface the removal step may involve hydrodynamic as well as surface chemical forces. Emulsion formation is covered in Chapter XIV. In roll-up the surfactant reduces the contact angle of the liquid soil or the surface free energy of a solid particle aiding its detachment and subsequent removal by hydrodynamic forces. Adam and Stevenson s beautiful photographs illustrate roll-up of lanoline on wood fibers [231]. In order to achieve roll-up, one requires the surface free energies for soil detachment illustrated in Fig. XIII-14 to obey... [Pg.485]

The creation terms embody the changes in momentum arising from external forces in accordance with Newton s second law (F = ma). The body forces arise from gravitational, electrostatic, and magnetic fields. The surface forces are the shear and normal forces acting on the fluid diffusion of momentum, as manifested in viscosity, is included in these terms. In practice the vector equation is usually resolved into its Cartesian components and the normal stresses are set equal to the pressures over those surfaces through which fluid is flowing. [Pg.108]

Water loss in operating an HDR faciUty may result from either increased storage within the body of the reservoir or diffusion into the rock body beyond the periphery of the reservoir (38). When a reservoir is created, the joints which are opened immediately fill with water. Micropores or microcracks may fill much more slowly, however. Figure 11 shows water consumption during an extended pressurization experiment at the HDR faciUty operated by the Los Alamos National Laboratory at Fenton Hill, New Mexico. As the microcracks within the reservoir become saturated, the water consumption at a set pressure declines. It does not go to zero because diffusion at the reservoir boundary can never be completely elirninated. Of course, if a reservoir joint should intersect a natural open fault, water losses may be high under any conditions. [Pg.271]

The rationale for the development of such fibers is demonstrated by their appHcation in the medical field, notably hemoperfusion, where cartridges loaded with activated charcoal-filled hoUow fiber contact blood. Low molecular weight body wastes diffuse through the fiber walls and are absorbed in the fiber core. In such processes, the blood does not contact the active sorbent direcdy, but faces the nontoxic, blood compatible membrane (see Controlled RELEASE TECHNOLOGY, pharmaceutical). Other uses include waste industrial appHcations as general as chromates and phosphates and as specific as radioactive/nuclear materials. [Pg.155]

Active Transport. Maintenance of the appropriate concentrations of K" and Na" in the intra- and extracellular fluids involves active transport, ie, a process requiring energy (53). Sodium ion in the extracellular fluid (0.136—0.145 AfNa" ) diffuses passively and continuously into the intracellular fluid (<0.01 M Na" ) and must be removed. This sodium ion is pumped from the intracellular to the extracellular fluid, while K" is pumped from the extracellular (ca 0.004 M K" ) to the intracellular fluid (ca 0.14 M K" ) (53—55). The energy for these processes is provided by hydrolysis of adenosine triphosphate (ATP) and requires the enzyme Na" -K" ATPase, a membrane-bound enzyme which is widely distributed in the body. In some cells, eg, brain and kidney, 60—70 wt % of the ATP is used to maintain the required Na" -K" distribution. [Pg.380]

AletabolicFunctions. The chlorides are essential in the homeostatic processes maintaining fluid volume, osmotic pressure, and acid—base equihbria (11). Most chloride is present in body fluids a Htde is in bone salts. Chloride is the principal anion accompanying Na" in the extracellular fluid. Less than 15 wt % of the CF is associated with K" in the intracellular fluid. Chloride passively and freely diffuses between intra- and extracellular fluids through the cell membrane. If chloride diffuses freely, but most CF remains in the extracellular fluid, it follows that there is some restriction on the diffusion of phosphate. As of this writing (ca 1994), the nature of this restriction has not been conclusively estabUshed. There may be a transport device (60), or cell membranes may not be very permeable to phosphate ions minimising the loss of HPO from intracellular fluid (61). [Pg.380]

In other designs, a diffused siUcon sensor is mounted in a meter body that is designed to permit caUbration, convenient installation in pressure systems and electrical circuits, protection against overload, protection from weather, isolation from corrosive or conductive process fluids, and in some cases to meet standards requirements, eg, of Factory Mutual. A typical process pressure meter body is shown in Figure 10. Pressure measurement from 0—746 Pa (0—3 in. H2O) to 0—69 MPa (0—10,000 psi) is available for process temperatures in the range —40 to 125°C. Differential pressure- and absolute pressure-measuring meter bodies are also available. As transmitters, the output of these devices is typically 4—20 m A dc with 25-V-dc supply voltage. [Pg.25]

Clinically, GM-CSF or G-CSF have been used to accelerate recovery after chemotherapy and total body or extended field irradiation, situations that cause neutropenia and decreased platelets, and possibly lead to fatal septic infection or diffuse hemorrhage, respectively. G-CSF and GM-CSF reproducibly decrease the period of granulocytopenia, the number of infectious episodes, and the length of hospitalization in such patients (152), although it is not clear that dose escalation of the cytotoxic agent and increased cure rate can be rehably achieved. One aspect of the effects of G-CSF and GM-CSF is that these agents can activate mature cells to function more efficiently. This may, however, also lead to the production of cytokines, such as TNF- a, that have some toxic side effects. In general, both cytokines are reasonably well tolerated. The side effect profile of G-CSF is more favorable than that of GM-CSF. Medullary bone pain is the only common toxicity. [Pg.494]

There are three types of Hquid content in a packed bed (/) in a submerged bed, there is Hquid filling the larger channels, pores, and interstitial spaces (2) in a drained bed, there is Hquid held by capillary action and surface tension at points of particle contact, or near-contact, as weU as a zone saturated with Hquid corresponding to a capillary height in the bed at the Hquid discharge face of the cake and (3) essentially undrainable Hquid exists within the body of each particle or in fine, deep pores without free access to the surface except perhaps by diffusion or compaction. [Pg.399]

Materials may be absorbed by a variety of mechanisms. Depending on the nature of the material and the site of absorption, there may be passive diffusion, filtration processes, faciHtated diffusion, active transport and the formation of microvesicles for the cell membrane (pinocytosis) (61). EoUowing absorption, materials are transported in the circulation either free or bound to constituents such as plasma proteins or blood cells. The degree of binding of the absorbed material may influence the availabiHty of the material to tissue, or limit its elimination from the body (excretion). After passing from plasma to tissues, materials may have a variety of effects and fates, including no effect on the tissue, production of injury, biochemical conversion (metaboli2ed or biotransformed), or excretion (eg, from liver and kidney). [Pg.230]

Uranium can enter the human body orally, by inhalation, and through the skin and mucous membranes. Uranium compounds, both soluble and insoluble, ate absorbed most readily from the lungs. In the blood of exposed animals, uranium occurs in two forms in equiUbrium with each other as a nondiffusible complex with plasma proteins and as a diffusible bicarbonate complex (242). [Pg.336]

Rate of Diffusion. Diffusion is the process by which molecules are transported from one part of a system to another as a result of random molecular motion. This eventually leads to an equalization of chemical potential and concentration throughout the system, and in the case of dyeing an equihbrium between dye in the fiber and dye in the dyebath. In dyeing there are three stages to diffusion diffusion of dye through the bulk solution of the dyebath to the fiber surface, diffusion through this surface, and diffusion of dye from the surface into the body of the fiber to allow for more dye to diffuse through the surface layer. These processes have been summarized elsewhere (9). [Pg.352]

Electrokinetics. The first mathematical description of electrophoresis balanced the electrical body force on the charge in the diffuse layer with the viscous forces in the diffuse layer that work against motion (6). Using this force balance, an equation for the velocity, U, of a particle in an electric field... [Pg.178]


See other pages where Diffusion bodies is mentioned: [Pg.293]    [Pg.366]    [Pg.156]    [Pg.130]    [Pg.194]    [Pg.293]    [Pg.366]    [Pg.156]    [Pg.130]    [Pg.194]    [Pg.2767]    [Pg.340]    [Pg.402]    [Pg.99]    [Pg.237]    [Pg.515]    [Pg.2]    [Pg.72]    [Pg.269]    [Pg.456]    [Pg.253]    [Pg.255]    [Pg.385]    [Pg.213]    [Pg.182]    [Pg.466]    [Pg.143]    [Pg.203]    [Pg.224]    [Pg.225]    [Pg.226]    [Pg.228]    [Pg.231]    [Pg.457]    [Pg.1094]    [Pg.1174]   
See also in sourсe #XX -- [ Pg.104 , Pg.105 , Pg.106 ]




SEARCH



Diffusion body-force

Diffusion green body drying

Diffusive body force

Semi-infinite transient diffusion bodies

Transient diffusion bodies

© 2024 chempedia.info