Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic system differential equations

M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York, 1974. [Pg.399]

Hirsch, M. Smale, S. (1974). Differential equations, dynamical systems, and linear algebra. Academic Press, New York. [Pg.232]

Arnold, V. I. and Ilyashenko, Y. S. [1985] Ordinary Differential Equations Dynamical Systems I. Encyclopaedia of Mathematical Sciences (Springer-Verlag New York). [Pg.561]

Ordinary differential equations govern systems that vary either with time or space, but not both. Examples are equations that govern the dynamics of a CSTR or the steady state of mbular reactors. Both the dynamics of a CSTR and the steady state of a plug-flow reactor are governed by first-order ordinary differential equations with prescribed initial conditions. The steady-state tubular reactors with axial dispersion are governed by a second-order differential equation with the boundary conditions spec-... [Pg.41]

X he most commonly encountered mathematical models in engineering and science are in the form of differential equations. The dynamics of physical systems that have one independent variable can be modeled by ordinary differential equations, whereas systems with two, or more, independent variables require the use of partial differential equations. Several types of ordinary differential equations, and a few partial differential equations, render themselves to analytical (closed-form) solutions. These methods have been developed thoroughly in differential calculus. However, the great majority of differential equations, especially the nonlinear ones and those that involve large sets of... [Pg.143]

Dynamic simnlation of ordinary differential equation (ODE) systems is discussed in Chapter 4. For now, we merely note that we use ode23s to propagate the dynamics until the fiuiction norm is decreased to a value deemed sufficiently small for the robust start of Newton s method. [Pg.94]

Robert D. Skeel, Jeffrey J. Biesiadecki, and Daniel Okunbor. Symplectic integration for macromolecular dynamics. In Proceedings of the International Conference Computation of Differential Equations and Dynamical Systems. World Scientific Publishing Co., 1992. in press. [Pg.95]

The classical microscopic description of molecular processes leads to a mathematical model in terms of Hamiltonian differential equations. In principle, the discretization of such systems permits a simulation of the dynamics. However, as will be worked out below in Section 2, both forward and backward numerical analysis restrict such simulations to only short time spans and to comparatively small discretization steps. Fortunately, most questions of chemical relevance just require the computation of averages of physical observables, of stable conformations or of conformational changes. The computation of averages is usually performed on a statistical physics basis. In the subsequent Section 3 we advocate a new computational approach on the basis of the mathematical theory of dynamical systems we directly solve a... [Pg.98]

In this paper, we discuss semi-implicit/implicit integration methods for highly oscillatory Hamiltonian systems. Such systems arise, for example, in molecular dynamics [1] and in the finite dimensional truncation of Hamiltonian partial differential equations. Classical discretization methods, such as the Verlet method [19], require step-sizes k smaller than the period e of the fast oscillations. Then these methods find pointwise accurate approximate solutions. But the time-step restriction implies an enormous computational burden. Furthermore, in many cases the high-frequency responses are of little or no interest. Consequently, various researchers have considered the use of scini-implicit/implicit methods, e.g. [6, 11, 9, 16, 18, 12, 13, 8, 17, 3]. [Pg.281]

Mathematical and Computational Implementation. Solution of the complex systems of partial differential equations governing both the evolution of pollutant concentrations and meteorological variables, eg, winds, requires specialized mathematical techniques. Comparing the two sets of equations governing pollutant dynamics (eq. 5) and meteorology (eqs. 12—14) shows that in both cases they can be put in the form ... [Pg.384]

There are special numerical analysis techniques for solving such differential equations. New issues related to the stabiUty and convergence of a set of differential equations must be addressed. The differential equation models of unsteady-state process dynamics and a number of computer programs model such unsteady-state operations. They are of paramount importance in the design and analysis of process control systems (see Process control). [Pg.80]

Mathematical models that represent the dynamic behaviour of physical systems are constructed using differential equations. A more accurate representation of the motor vehicle would be... [Pg.14]

In general, consider a system whose output is x t), whose input is y t) and contains constant coefficients of values a, h, c,..., z. If the dynamics of the system produce a first-order differential equation, it would be represented as... [Pg.15]

If the system dynamics produced a second-order differential equation, it would be represented by... [Pg.15]

An alternative procedure is the dynamic programming method of Bellman (1957) which is based on the principle of optimality and the imbedding approach. The principle of optimality yields the Hamilton-Jacobi partial differential equation, whose solution results in an optimal control policy. Euler-Lagrange and Pontrya-gin s equations are applicable to systems with non-linear, time-varying state equations and non-quadratic, time varying performance criteria. The Hamilton-Jacobi equation is usually solved for the important and special case of the linear time-invariant plant with quadratic performance criterion (called the performance index), which takes the form of the matrix Riccati (1724) equation. This produces an optimal control law as a linear function of the state vector components which is always stable, providing the system is controllable. [Pg.272]

In his early survey of computer experiments in materials science , Beeler (1970), in the book chapter already cited, divides such experiments into four categories. One is the Monte Carlo approach. The second is the dynamic approach (today usually named molecular dynamics), in which a finite system of N particles (usually atoms) is treated by setting up 3A equations of motion which are coupled through an assumed two-body potential, and the set of 3A differential equations is then solved numerically on a computer to give the space trajectories and velocities of all particles as function of successive time steps. The third is what Beeler called the variational approach, used to establish equilibrium configurations of atoms in (for instance) a crystal dislocation and also to establish what happens to the atoms when the defect moves each atom is moved in turn, one at a time, in a self-consistent iterative process, until the total energy of the system is minimised. The fourth category of computer experiment is what Beeler called a pattern development... [Pg.468]

Consider a general u-dimensional dynamical system defined by the differential equations... [Pg.201]

Turbulence is generally understood to refer to a state of spatiotemporal chaos that is to say, a state in which chaos exists on all spatial and temporal scales. If the reader is unsatisfied with this description, it is perhaps because one of the many important open questions is how to rigorously define such a state. Much of our current understanding actually comes from hints obtained through the study of simpler dynamical systems, such as ordinary differential equations and discrete mappings (see chapter 4), which exhibit only temporal chaosJ The assumption has been that, at least for scenarios in which the velocity field fluctuates chaotically in time but remains relatively smooth in space, the underlying mechanisms for the onset of chaos in the simpler systems and the onset of the temporal turbulence in fluids are fundamentally the same. [Pg.470]

B) Variational Equations.—Consider again a dynamical system whose motion is specified by the differential equation... [Pg.344]

In Schrodinger s wave mechanics (which has been shown4 to be mathematically identical with Heisenberg s quantum mechanics), a conservative Newtonian dynamical system is represented by a wave function or amplitude function [/, which satisfies the partial differential equation... [Pg.256]

As an illustration of the concept introduced above, let us consider a coupled two-reservoir system with no external forcing (Fig. 4-6). The dynamic behavior of this system is governed by the two differential equations... [Pg.68]

To properly describe electronic rearrangement and its dependence on both nuclear positions and velocities, it is necessary to develop a time-dependent theory of the electronic dynamics in molecular systems. A very useful approximation in this regard is the time-dependent Hartree-Fock approximation (34). Its combination with the eikonal treatment has been called the Eik/TDHF approximation, and has been implemented for ion-atom collisions.(21, 35-37) Approximations can be systematically developed from time-dependent variational principles.(38-41) These can be stated for wavefunctions and lead to differential equations for time-dependent parameters present in trial wavefunctions. [Pg.319]

Unlike stirred tanks, piston flow reactors are distributed systems with one-dimensional gradients in composition and physical properties. Steady-state performance is governed by ordinary differential equations, and dynamic performance is governed by partial differential equations, albeit simple, first-order PDEs. Figure 14.6 illustrates a component balance for a differential volume element. [Pg.531]

Equations of gas dynamics with heat conductivity. We are now interested in a complex problem in which the gas flow is moving under the heat conduction condition. In conformity with (l)-(7), the system of differential equations for the ideal gas in Lagrangian variables acquires the form... [Pg.541]

The partial differential equations used to model the dynamic behavior of physicochemical processes often exhibit complicated, non-recurrent dynamic behavior. Simple simulation is often not capable of correlating and interpreting such results. We present two illustrative cases in which the computation of unstable, saddle-type solutions and their stable and unstable manifolds is critical to the understanding of the system dynamics. Implementation characteristics of algorithms that perform such computations are also discussed. [Pg.284]

The basic principles are described in many textbooks [24, 26]. They are thus only sketchily presented here. In a conventional classical molecular dynamics calculation, a system of particles is placed within a cell of fixed volume, most frequently cubic in size. A set of velocities is also assigned, usually drawn from a Maxwell-Boltzmann distribution appropriate to the temperature of interest and selected in a way so as to make the net linear momentum zero. The subsequent trajectories of the particles are then calculated using the Newton equations of motion. Employing the finite difference method, this set of differential equations is transformed into a set of algebraic equations, which are solved by computer. The particles are assumed to interact through some prescribed force law. The dispersion, dipole-dipole, and polarization forces are typically included whenever possible, they are taken from the literature. [Pg.271]

Complex systems can often be represented by linear time-dependent differential equations. These can conveniently be converted to algebraic form using Laplace transformation and have found use in the analysis of dynamic systems (e.g., Coughanowr and Koppel, 1965, Stephanopolous, 1984 and Luyben, 1990). [Pg.80]

The principle of the perfectly-mixed stirred tank has been discussed previously in Sec. 1.2.2, and this provides essential building block for modelling applications. In this section, the concept is applied to tank type reactor systems and stagewise mass transfer applications, such that the resulting model equations often appear in the form of linked sets of first-order difference differential equations. Solution by digital simulation works well for small problems, in which the number of equations are relatively small and where the problem is not compounded by stiffness or by the need for iterative procedures. For these reasons, the dynamic modelling of the continuous distillation columns in this section is intended only as a demonstration of method, rather than as a realistic attempt at solution. For the solution of complex distillation problems, the reader is referred to commercial dynamic simulation packages. [Pg.129]


See other pages where Dynamic system differential equations is mentioned: [Pg.140]    [Pg.140]    [Pg.1954]    [Pg.833]    [Pg.557]    [Pg.2101]    [Pg.98]    [Pg.281]    [Pg.498]    [Pg.260]    [Pg.381]    [Pg.720]    [Pg.86]    [Pg.177]    [Pg.486]    [Pg.284]   
See also in sourсe #XX -- [ Pg.328 , Pg.329 , Pg.330 , Pg.331 , Pg.332 ]




SEARCH



DYNAMIC DIFFERENTIAL

Differential system

Dynamic equation

Dynamic system

Dynamical equation

Dynamical equator

Dynamical systems

Equations systems

System Dynamic Equations

© 2024 chempedia.info