Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Difference method properties

For the determination of the approximated solution of this equation the finite difference method and the finite element method (FEM) can be used. FEM has advantages because of lower requirements to the diseretization. If the material properties within one element are estimated to be constant the last term of the equation becomes zero. Figure 2 shows the principle discretization for the field computation. [Pg.313]

It will be seen that each method for surface area determination involves the measurement of some property that is observed qualitatively to depend on the extent of surface development and that can be related by means of theory to the actual surface area. It is important to realize that the results obtained by different methods differ, and that one should in general expect them to differ. The problem is that the concept of surface area turns out to be a rather elusive one as soon as it is examined in detail. [Pg.572]

Finally, in the case of solids, there is the difficulty that surface atoms and molecules differ in their properties from one location to another. The discussion in Section VII-4 made clear the variety of surface heterogeneities possible in the case of a solid. Those measurements that depend on the state of surface atoms or molecules will generally be influenced differently by such heterogeneities. Different methods of measuring surface area will thus often not only give different absolute values, but may also give different relative values for a series of solids. [Pg.574]

There are many algorithms for integrating the equations of motion using finite difference methods, several of which are commonly used in molecular dynamics calculations. All algorithms assume that the positions and dynamic properties (velocities, accelerations, etc.) can be approximated as Taylor series expansions ... [Pg.369]

Froth flotation (qv) is a significant use of foam for physical separations. It is used to separate the more precious minerals from the waste rock extracted from mines. This method reHes on the different wetting properties typical for the different extracts. Usually, the waste rock is preferentially wet by water, whereas the more valuable minerals are typically hydrophobic. Thus the mixture of the two powders are immersed in water containing foam promoters. Also added are modifiers which help ensure that the surface of the waste rock is hydrophilic. Upon formation of a foam by bubbling air and by agitation, the waste rock remains in the water while the minerals go to the surface of the bubbles, and are entrapped in the foam. The foam rises, bringing... [Pg.431]

Optical properties of fibers are measured by light microscopy methods. ASTM D276 describes the procedure for fiber identification using refractive indexes and birefringence. Other methods for determining fiber optical properties have been discussed (3,38—44). However, different methods of determining optical properties may give different results (42). [Pg.454]

Step 4 deals with physical and chemical properties of compounds and mixtures. Accurate physical and chemical properties ate essential to achieve accurate simulation results. Most simulators have a method of maintaining tables of these properties as well as computet routines for calculations for the properties by different methods. At times these features of simulators make them suitable or not suitable for a particular problem. The various simulators differ ia the number of compounds ia the data base number of methods for estimating unknown properties petroleum fractions characterized electrolyte properties handled biochemical materials present abiUty to handle polymers and other complex materials and the soflds, metals, and alloys handled. [Pg.73]

There are three distinct modes of electrophoresis zone electrophoresis, isoelectric focusing, and isotachophoresis. These three methods may be used alone or in combination to separate molecules on both an analytical (p.L of a mixture separated) and preparative (mL of a mixture separated) scale. Separations in these three modes are based on different physical properties of the molecules in the mixture, making at least three different analyses possible on the same mixture. [Pg.178]

Two-Dimensional Electrophoresis. Two-dimensional (2D) electrophoresis is unique, offering an analytical method that is both reproducible and sensitive. It is referred to as 2D because it employs two different methods of electrophoresis, in two different dimensions, to produce one result. Each method separates the sample compounds based on different properties of each compound. The combination of the two methods gives better resolution of the compounds in the sample than could be achieved with either method alone. For example, each method alone may separate up to 100 components of a sample, whereas together they may separate up to 10,000 components. [Pg.184]

The sorption of ions of heavy metals (Cu(II), Zn(II), Cr(VI), Cd(II), Pb(II)) on ChCS in static and dynamic conditions were studied. For an estimation of selective sorbate ability ChCS the distribution factor was determined. Sorption, physical and chemical properties of complexes received by different methods were analyzed by a compai ative method. [Pg.288]

A substance is usually taken to be of an acceptable purity when the measured property is unchanged by further treatment (especially if it agrees with a recorded value). In general, at least two different methods, such as recrystallisation and distillation, should be used in order to ensure maximum purity. Crystallisation may be repeated (from the same solvent or better from different solvents) until the substance has a constant melting point or absorption spectrum, and until it distils repeatedly within a narrow, specified temperature range. [Pg.2]

A variety of coagulation methods is available to prepare the rubber for dry rubber technology processes. Since the properties of the rubber are affected by trace ingredients and by the coagulating agents used, rubbers of different properties are obtained by using the different methods. TTie major types of raw rubber are ... [Pg.286]

Implicit in all these solutions is the fact that, when two spherical indentors are made to approach one another, the resulting deformed surface is also spherical and is intermediate in curvature between the shape of the two surfaces. Hertz [27] recognized this concept and used it in the development of his theory, yet the concept is a natural consequence of the superposition method based on Boussinesq and Cerutti s formalisms for integration of points loads. A corollary to this concept is that the displacements are additive so that the compliances can be added for materials of differing elastic properties producing the following expressions common to many solutions... [Pg.146]

A more flexible option from an operational viewpoint is the implementation of process-oriented enhancements that intensify particle separation. This can be achieved by two different methods. In the first method, the suspension to be separated is pretreated to obtain a cake with minimal resistance. This involves the addition of filter aids, flocculants or electrolytes to the suspension. In the second method, the period during which suspensions are formed provides the opportunity to alter suspension properties or conditions that are more favorable to... [Pg.76]

The electronic properties of single-walled carbon nanotubes have been studied theoretically using different methods[4-12. It is found that if n — wr is a multiple of 3, the nanotube will be metallic otherwise, it wiU exhibit a semiconducting behavior. Calculations on a 2D array of identical armchair nanotubes with parallel tube axes within the local density approximation framework indicate that a crystal with a hexagonal packing of the tubes is most stable, and that intertubule interactions render the system semiconducting with a zero energy gap[35]. [Pg.133]

The properties of polymers depend not only on overall chain length, but also on the degree to which the monomers are ordered along the chain. Different methods of preparation lead to vastly different degrees of ordering. A good example is found in the polymerization of propylene. This polymerizes predominantly head-to-tail , and leads to a stereocenter ( ) at every other atom in the polymer chain. [Pg.252]

Enantiomeric separations have become increasingly important, especially in the pharmaceutical and agricultural industries as optical isomers often possess different biological properties. The analysis and preparation of a pure enantiomer usually involves its resolution from the antipode. Among all the chiral separation techniques, HPLC has proven to be the most convenient, reproducible and widely applicable method. Most of the HPLC methods employ a chiral selector as the chiral stationary phase (CSP). [Pg.24]

The diffusion coefficients of the constituent ions in ionic liquids have most commonly been measured either by electrochemical or by NMR methods. These two methods in fact measure slightly different diffusional properties. The electrochemical methods measure the diffusion coefficient of an ion in the presence of a concentration gradient (Pick diffusion) [59], while the NMR methods measure the diffusion coefficient of an ion in the absence of any concentration gradients (self-diffusion) [60]. Fortunately, under most circumstances these two types of diffusion coefficients are roughly equivalent. [Pg.119]


See other pages where Difference method properties is mentioned: [Pg.187]    [Pg.913]    [Pg.2608]    [Pg.381]    [Pg.391]    [Pg.358]    [Pg.601]    [Pg.241]    [Pg.214]    [Pg.443]    [Pg.497]    [Pg.450]    [Pg.35]    [Pg.478]    [Pg.346]    [Pg.75]    [Pg.92]    [Pg.1]    [Pg.659]    [Pg.291]    [Pg.91]    [Pg.201]    [Pg.217]    [Pg.442]    [Pg.496]    [Pg.318]    [Pg.182]    [Pg.136]    [Pg.333]    [Pg.470]    [Pg.335]    [Pg.340]   
See also in sourсe #XX -- [ Pg.209 , Pg.210 ]




SEARCH



Difference method

Difference method with constant material properties

Different Methods

© 2024 chempedia.info