Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diene elastomers polymer properties

Medintseva, T.I., Dreval, V.E., Erina, N.A., and Prut, E.V., Rheological properties thermoplastic elastomers based on isotactic polypropylene with an ethylene-propylene-diene terpolymer, Polym. Sci. A, 45, 2032, 2003. [Pg.578]

The early synthetic rubbers were diene polymers such as poly butadiene. Diene elastomers possess a considerable degree of unsaturation, some of which provide the sites required for the light amount of cross-linking structurally necessary for elastomeric properties. The residual double bonds make diene elastomers vulnerable to oxidative and ozone attack. To overcome this problem, saturated elastomers like butyl rubber and ethylene-propylene rubber (EPR) were developed. These rubbers were, unfortunately, not readily vulcanized by conventional means. To enhance cure, it was therefore necessary to... [Pg.142]

Common examples of miscible blends are ethylene-propylene copolymers of different composition that result in an elastomer comprising a semicrystalline, higher ethylene content and an amorphous, lower ethylene content components. These blends combine the higher tensile strength of the semicrystaUine polymers and the favorable low temperature properties of amorphous polymers. Chemical differences in miscible blends of ethylene-propylene and styrene-butadiene copolymers can also arise from differences in the distribution and the type of vulcanization site on the elastomer. The uneven distribution of diene, which is the site for vulcanization in blends of ethylene-propylene-diene elastomers, can lead to the formation of two distinct, intermingled vulcanization networks. [Pg.530]

The first commercial fluoroelastomer, introduced in 1948, was a polymer of fluoroprene (2-fluorobuta-l,3-diene) (CH2 = CF — CH = CH2). In general, the elastomer has properties resembling those of neoprene and the advent of superior fluoroelastomers has led to the discontinuance of manufacture. Many copolymers of fluoroprene have been investigated but none have attained commercial status. [Pg.150]

The pol nners prepared with a diene content between 55 to 70 weight percent were thermoplastic elastomers. The properties of the polymers prepared by the several different procedures were comparable and also comparable to conventional styrene-diene block polymers with the exception that the softening temperature as measured by thermomechanical analysis was 20 C higher than that of the corresponding styrene-diene block polymers. The SAMS-based triblock polymers prepared with a diene content below 40% were clear impact resisting plastics. The Vicat softening points of the clear plastics samples were also about 30 C higher than those of similar polymers based on styrene and butadiene. [Pg.129]

Silicone rubber and, in general polar polymers, are by nature materials of choice for preparing silica filled systems however limited to niche applications, with respect to the range of properties that such specialty polymers may offer. In order to develop optimum reinforcing performance with more common diene elastomers, silica must be chemically treated as we will see below, because contrary to carbon blacks, silica particles do not develop spontaneous strong interactions with nonpolar polymers. It is nevertheless interesting to see that, even with comparable size and structure, pure silica does not affect the mechanical properties of vulcanized rubber compounds in the same manner as carbon black. [Pg.237]

Ozonc-rcsjstant elastomers which have no unsaturation are an exceUent choice when their physical properties suit the appHcation, for example, polyacrylates, polysulfides, siHcones, polyesters, and chlorosulfonated polyethylene (38). Such polymers are also used where high ozone concentrations are encountered. Elastomers with pendant, but not backbone, unsaturation are likewise ozone-resistant. Elastomers of this type are the ethylene—propylene—diene (EPDM) mbbers, which possess a weathering resistance that is not dependent on environmentally sensitive stabilizers. Other elastomers, such as butyl mbber (HR) with low double-bond content, are fairly resistant to ozone. As unsaturation increases, ozone resistance decreases. Chloroprene mbber (CR) is also quite ozone-resistant. [Pg.238]

Between the 1920s when the initial commercial development of mbbery elastomers based on 1,3-dienes began (5—7), and 1955 when transition metal catalysts were fkst used to prepare synthetic polyisoprene, researchers in the U.S. and Europe developed emulsion polybutadiene and styrene—butadiene copolymers as substitutes for natural mbber. However, the tire properties of these polymers were inferior to natural mbber compounds. In seeking to improve the synthetic material properties, research was conducted in many laboratories worldwide, especially in the U.S. under the Rubber Reserve Program. [Pg.530]

ADMET is quite possibly the most flexible transition-metal-catalyzed polymerization route known to date. With the introduction of new, functionality-tolerant robust catalysts, the primary limitation of this chemistry involves the synthesis and cost of the diene monomer that is used. ADMET gives the chemist a powerful tool for the synthesis of polymers not easily accessible via other means, and in this chapter, we designate the key elements of ADMET. We detail the synthetic techniques required to perform this reaction and discuss the wide range of properties observed from the variety of polymers that can be synthesized. For example, branched and functionalized polymers produced by this route provide excellent models (after quantitative hydrogenation) for the study of many large-volume commercial copolymers, and the synthesis of reactive carbosilane polymers provides a flexible route to solvent-resistant elastomers with variable properties. Telechelic oligomers can also be made which offer an excellent means for polymer modification or incorporation into block copolymers. All of these examples illustrate the versatility of ADMET. [Pg.435]

Conjugated dienes such as 1,3-butadiene very readily polymerize free radically. The important thing to remember here is that there are double bonds still present in the polymer. This is especially important in the case of elastomers (synthetic rubbers) because some cross-linking with disulfide bridges (vulcanization) can occur in the finished polymer at the allylic sites still present to provide elastic properties to the overall polymers. Vulcanization will be discussed in detail in Chapter 18, Section 3. The mechanism shown in Fig. 14.3 demonstrates only the 1,4-addition of butadiene for simplicity. 1,2-Addition also occurs, and the double bonds may be cis or trans in their stereochemistry. Only with the metal complex... [Pg.251]

Several high-performance or engineering polymers, such as the polyfluo-rocarbons, acetals, ABS, nylons, polyurethanes (PUs), silicones, and phos-phazenes, have been described in previous chapters. Several elastomers, such as butyl rubber, EPDM (elastomeric terpolymer from ethylene, propylene, and a nonconjugated diene), and Neoprene, which play a vital role in engineering, and a host of classic thermosets should also be considered high-performance polymers. The properties of other high-performance polymers are described in this chapter. [Pg.185]

Cyclopentene is readily available as a byproduct in the ethylene production. Norbornene 2-ethylhexyl carboxylate is obtained by the Diels-Alder reaction of 2-ethylhexyl acrylate with cyclopenta-diene (5). Norbornene isobornyl carboxylate, norbornene phen-oxyethyl carboxylate, and other related monomers are synthesized according to the same route. Polymers obtained from these esters exhibit excellent properties in terms of controlling the crosslinking density, the associated product modulus, and the glass transition temperature (Tg), thus allowing tailoring the properties of elastomers, plastics and composites. Other suitable monomers are summarized in Table 1.1 and sketched in Figure 1.2. [Pg.2]

With larger amount of propylene a random copolymer known as ethylene-propylene-monomer (EPM) copolymer is formed, which is a useful elastomer with easy processability and improved optical properties.208,449 Copolymerization of ethylene and propylene with a nonconjugated diene [EPDM or ethylene-propylene-diene-monomer copolymer] introduces unsaturation into the polymer structure, allowing the further improvement of physical properties by crosslinking (sulfur vulcanization) 443,450 Only three dienes are employed commercially in EPDM manufacture dicyclopentadiene, 1,4-hexadiene, and the most extensively used 5-ethylidene-2-norbomene. [Pg.772]

Of great industrial interest are the copolymers of ethene and propene with a molar ratio of 1/0.5, up to 1/2. These EP-polymers show elastic properties and, together with 2-5 wt% of dienes as third monomers, they are used as elastomers (EPDM). Since they have no double bonds in the backbone of the polymer, they are less sensitive to oxidation reactions. As dienes, ethylidenenorbomene, 1,4-hexadiene, and dicyclopentadiene are used. In most technical processes for the production of EP and EPDM rubber in the past, soluble or highly disposed vanadium components are used [69]. Similar elastomers can be obtained with metallocene/MAO catalysts by a much higher activity which are less colored [70-72]. The regiospecificity of the metallocene catalysts toward propene leads exclusively to the formation of head-to-tail enchainments. The ethylidenenor-bornene polymerizes via vinyl polymerization of the cyclic double bond and the tendency to branching is low. The molecular weight distribution of about 2 is narrow [73]. [Pg.156]

Parikh, D. R. Edmondson, M. S. Smith, B. W. Winter, J. M. Castille, M. J. Magee, J. M. Patel, R. M. Karajala, T. P. Structure and Properties of Single-site Constrained Geometry Ethylene-Propylene-Diene (EPDM) Elastomers. In Metallocene-catalyzed Polymers -Materials, Properties, Processing Markets, Benedikt, G. M., Goodall, B. L., Eds. Plastics Design Library New York, 1998 p 113. [Pg.1155]


See other pages where Diene elastomers polymer properties is mentioned: [Pg.522]    [Pg.351]    [Pg.248]    [Pg.268]    [Pg.990]    [Pg.574]    [Pg.470]    [Pg.313]    [Pg.128]    [Pg.346]    [Pg.246]    [Pg.296]    [Pg.265]    [Pg.441]    [Pg.27]    [Pg.738]    [Pg.742]    [Pg.246]    [Pg.220]    [Pg.251]    [Pg.98]    [Pg.265]    [Pg.12]    [Pg.12]    [Pg.208]    [Pg.448]    [Pg.116]    [Pg.126]    [Pg.471]    [Pg.474]    [Pg.126]    [Pg.51]    [Pg.2266]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Diene elastomers

Dienes polymers

Dienes properties

Elastomers dienes

Elastomers properties

Polymers elastomers

© 2024 chempedia.info