Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dicarboxylic-acid-activated ester

How the aliphatic monomers are incorporated into the suberin polymer is not known. Presumably, activated co-hydroxy acids and dicarboxylic acids are ester-ified to the hydroxyl groups as found in cutin biosynthesis. The long chain fatty alcohols might be incorporated into suberin via esterification with phenylpro-panoic acids such as ferulic acid, followed by peroxidase-catalyzed polymerization of the phenolic derivative. This suggestion is based on the finding that ferulic acid esters of very long chain fatty alcohols are frequently found in sub-erin-associated waxes. The recently cloned hydroxycinnamoyl-CoA tyramine N-(hydroxycinnamoyl) transferase [77] may produce a tyramide derivative of the phenolic compound that may then be incorporated into the polymer by a peroxidase. The glycerol triester composed of a fatty acid, caffeic acid and a>-hydroxy acid found in the suberin associated wax [40] may also be incorporated into the polymer by a peroxidase. [Pg.27]

Cyclic mew-configurated 1,2-dicarboxylic acid dimethyl esters are excellent substrates for pig liver esterase90. Cyclopropanedicarboxylales have been studied not only for synthetic reasons, but also so that an active-site and/or substrate model of pig liver may be developed13 5. The results obtained, compounds 11-17, are a good demonstration of the scope and limitation of PLE in asymmetric synthesis. Enantiomeric excesses of the monoesters can be determined by conversion into the amides with (S)-l-phenylethylamine and analysis either by GC or H-NMR spectroscopy, whereas the absolute configuration rests on chemical correlation. [Pg.634]

Many other compounds are presendy in use a 1993 database search showed 27 active ingredients in 212 products registered by the U.S. EPA for human use as repellents or feeding depressants, including octyl bicycloheptene dicarboxamide (lV-2-ethylhexylbicyclo[2.2.1]-5-hepten-2,3-dicarboxamide), dipropyl isocinchomeronate (2,5-pyridine dicarboxylic acid, dipropyl ester), dimethyl phthalate, oil of citronella, cedarwood oil, pyrethrins, and pine tar oil (2). Repellent—toxicant or biting depressant systems are available which are reasonably comfortable for the user and can protect completely against a number of pests for an extended period of time (2). [Pg.112]

Lipase-Catalyzed Polymerization of Dicarboxylic Acids or Their Derivatives. Enzymatic synthesis has been achieved via various combinations of dicarboxylic acid derivatives and glycols. As to the diacid monomer, dicarboxylic acids, activated and nonactivated esters, cyclic acid anhydrides, and polyanhydrides were enzymatically reacted with glycols under mild reaction conditions. [Pg.2626]

Isothiazole-4,5-dicarboxylic acid, 3-phenyl-dimethyl ester synthesis, S, 150 Isothiazole-5-glyoxylic acid ethyl ester reduction, 6, 156 Isothiazole-4-mercurioacetate reactions, 6, 164 Isothiazole-5-mercurioacetate reactions, 6, 164 Isothiazoles, 6, I3I-I75 acidity, 6, 141 alkylation, 6, 148 aromaticity, S, 32 6, 144-145 basicity, 6, I4I biological activity, 6, 175 boiling points, 6, I43-I44, 144 bond fixation, 6, 145 bond orders, 6, I32-I34 calculated, 6, 133 bromination, S, 58 6, 147 charge densities, 6, 132-134 cycloaddition reactions, 6, 152 desulfurization, S, 75 6, 152 deuteration, S, 70... [Pg.683]

Di- and mono-esters of phthalic acid, an ortho-dicarboxylic acid derivative of benzene. These compounds are widely used as industrial plasticizers to coat polyvinylchloride surfaces of plastics used in food packaging and medical devices (iv drip bags, blood storage bags, etc.) and are common environmental contaminants. Several phthalate mono-esters are peroxisome proliferator chemicals and can activate the peroxisome proliferator-activated receptor PPAR. [Pg.976]

So far, various dicarboxylic acid derivatives, dicarboxylic acids, their activated and non-activated esters, cyclic acid anhydrides, and polyanhydrides have been polymerized with glycols through lipase catalysis to give polyesters. [Pg.212]

FIGURE 1.9 Records of the minute electrical currents (downward deflections) that flow through single ligandgated ion channels in the junctional region of frog skeletal muscle. The currents arise from brief transitions of individual nicotinic receptors to an active (channel open) state in response to the presence of various agonists (ACh = acetylcholine SubCh = suberyldicholine DecCh = the dicholine ester of decan-1,10-dicarboxylic acid CCh = carbamylcholine). (From Colquhoun, D. and Sakmann, B., J. Physiol., 369,501-557, 1985. With permission.)... [Pg.27]

Various combinations of dicarboxylic acid derivatives and glycols enzymatically afforded polyesters under mild reaction conditions. Dicarboxylic acids as well as derivatives, activated and non-activated esters, cyclic acid anhydride, and polyanhydrides, were found to be useful as monomer for the enzymatic synthesis of polyesters. [Pg.242]

The formation of relatively ill-defined catalysts for epoxide/C02 copolymerization catalysts, arising from the treatment of ZnO with acid anhydrides or monoesters of dicarboxylic acids, has been described in a patent disclosure.968 Employing the perfluoroalkyl ester acid (342) renders the catalyst soluble in supercritical C02.969 At 110°C and 2,000 psi this catalyst mixture performs similarly to the zinc bisphenolates, producing a 96 4 ratio of polycarbonate polyether linkages, with a turnover of 440 g polymer/g [Zn] and a broad polydispersity (Mw/Mn>4). Related aluminum complexes have also been studied and (343) was found to be particularly active. However, selectivity is poor, with a ratio of 1 3.6 polycarbonate polyether.970... [Pg.56]

Systematic studies150,153 with CLX50, (7), decyl esters of pyridine monocarboxylic acids (8)-(10), and dipentyl esters of pyridine dicarboxylic acids (11)—(15) showed that extraction of Cu11 is strongly dependent on the activity of water and the total concentration of ionic and molecular species in the aqueous phase. For the monoesters, copper distribution is dependent on... [Pg.779]

Staros, J.V. (1982) N-hydroxysulfosuccinimide active esters Bw(N-hydroxysulfosuccinimide) esters of two dicarboxylic acids are hydrophilic, membrane impermeant, protein cross-linkers. Biochemistry 21, 3950-3955. [Pg.1117]

Norchrysanthemic acid (35) was first synthesized by Staudinger in 1924 [16] as the pyrolytic decomposition product of chrysanthemun dicarboxylic acid (36) (Scheme 6). In the 1970s, Ohno and Elliott independently reported [17] insecticidal norchrysanthemic acid esters and these norchrysanthemic acid esters showed comparable insecticidal activity to the corresponding chrysanthemates (Fig. 3). [Pg.38]

Toad bufadienolides occur not only by themselves but also in a conjugated form, sulfates, dicarboxylic esters and amino acid-dicarboxylic acid esters have all been reported (Steyn and van Heerden 1998). Because of the activity of the bufadienolides in inhibiting active monovalent cation transporters, it is suggested that these compounds have a role in maintaining sodium homeostasis in toads that migrate between fresh and salt water environments (Flier, I idwards, Daly and Myers 1980). [Pg.412]

To a mixture of 360 g 50% KOH and 138 ml methanol, add with stirring at -5° 70.5 g dimethyl ester of acetone dicarboxylic acid (dimethyl-beta-ketoglutarate — see method 3 for preparation) and let temperature rise to about 25° over V2 hour. Let stand ten minutes, cool to 0° and add 65 ml ether. Filter, wash precipitate with 65 ml ethanol and 150 ml ether at 0C to get 75 g (III). To 322 ml 1N HCI at 80c, add 41.1 g (I I) and stir twenty minutes cool to 10°, add 211 ml IN HCI, 98.2 g (Ml). 26.4 g Na acetate and 28.2 g methylamine HCI. Stir four hours at room temperature, cool to 10°, and saturate with 410 g KOH. Extract four times with methyl-Cl or benzene (75 ml each, fifteen minutes stirring) and evaporate in vacuum to get the methyl ester of tropan-3-one-2-COOH (IV), which precipitates from the oil (can distill 85/0,2). Test for activity. Dissolve 28.3 g (IV) in 170 ml 10% sulfuric acid cool to -5° and treat with 3.63 kg 1.5% Na-Hg amalgam with vigorous stirring at 0°. See below for easier methods of reducing (IV),... [Pg.155]

Activated esters (see Section 2.9) with 1-hydroxybenzotriazole as a catalyst are employed — pentafluorophenyl or 4-oxo-3,4-dihydrobenzotriazin-3-yl esters in particular for continuous-flow systems and special cases such as dicarboxylic amino acids. Other activated esters are not reactive enough. An alternative is preparation of benzotriazolyl esters using a carbodiimide followed by addition of the solution to the peptide-resin. [Pg.142]

Recently, treatment of the esters or amides of l-methylpyridinium-3,5-dicarboxylic acid salts with an alkanethiol and TEA in methylene chloride was found to give a mixture of dihydropyridines (Scheme 77) (80CC1147). These yellow adducts are particularly useful as thiolate transfer agents. Excellent yields of thioesters, for example (133), are formed by the reaction of the adducts with activated acid derivatives. [Pg.230]

Hydrolytic reactions. There are numerous different esterases responsible for the hydrolysis of esters and amides, and they occur in most species. However, the activity may vary considerably between species. For example, the insecticide malathion owes its selective toxicity to this difference. In mammals, the major route of metabolism is hydrolysis to the dicarboxylic acid, whereas in insects it is oxidation to malaoxon (Fig. 5.12). Malaoxon is a very potent cholinesterase inhibitor, and its insecticidal action is probably due to this property. The hydrolysis product has a low mammalian toxicity (see chap. 7). [Pg.141]

Plasticizers include the esters of a few aliphatic and aromatic mono and dicarboxylic acids, aliphatic and aromatic phosphorus acid esters, ethers, alcohols, ketones, amines, amides, and non-polar and chlorinated hydrocarbons. These additives are used in various mixtures. For their separation and qualitative detection, thin-layer chromatography (TLC) is preferred. Usually Kieselgur plates, 0.25 mm thick, activated at 110°C for 30 min, in the saturated vapor are used. Methylene chloride and mixtures of diisopropyl ether/petether at temperatures between 40 to 60°C have been successfully used as the mobile phase. Refer to Table 1. [Pg.98]


See other pages where Dicarboxylic-acid-activated ester is mentioned: [Pg.369]    [Pg.138]    [Pg.138]    [Pg.369]    [Pg.138]    [Pg.138]    [Pg.670]    [Pg.670]    [Pg.670]    [Pg.670]    [Pg.3]    [Pg.415]    [Pg.476]    [Pg.405]    [Pg.99]    [Pg.333]    [Pg.251]    [Pg.446]    [Pg.173]    [Pg.20]    [Pg.268]    [Pg.164]    [Pg.492]    [Pg.633]    [Pg.716]    [Pg.617]    [Pg.152]    [Pg.50]    [Pg.452]    [Pg.177]    [Pg.5]    [Pg.11]   
See also in sourсe #XX -- [ Pg.138 , Pg.139 , Pg.140 , Pg.141 ]




SEARCH



Activated esters

Active ester

Dicarboxylate esters

Dicarboxylic acid ester

Dicarboxylic esters

© 2024 chempedia.info