Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dialysis active

Patients with clinical evidence of pulmonary embolus or suspected embolism who are hemodynamically stable Arterial thromboembolism or patients who are currently receiving dialysis, actively bleeding, have had recent (within 2 weeks) major surgery/trauma, or have other severe uncompensated co-morbid conditions May vary depending on the patient s clinical condition... [Pg.400]

To solutions for peritoneal dialysis active substances may be added, for example antibiotics to treat peritonitis. In that case, their stability in a warm (37 °C) solution, in which in addition the pH will rise during dialysis, has to be taken into... [Pg.305]

Hollow Fiber with Sorbent Walls. A cellulose sorbent and dialy2ing membrane hoUow fiber was reported in 1977 by Enka Glan2stoff AG (41). This hoUow fiber, with an inside diameter of about 300 p.m, has a double-layer waU. The inner waU consists of Cuprophan ceUulose and is very thin, approximately 8 p.m. The outer waU, which is ca 40-p.m thick, consists mainly of sorbent substance bonded by ceUulose. The advantage of such a fiber is that it combines the principles of hemodialysis with those of hemoperfusion. Two such fibers have been made one with activated carbon in the fiber waU, and one with aluminum oxide, which is a phosphate binder (also see Dialysis). [Pg.155]

As of early 1992, the market for ceU culture-derived products approached 1 billion per year. The market is expected to grow substantially throughout the 1990s. CeU culture products include erythropoietin, 1991 sales of approximately 400 million, for the treatment of anemia associated with kidney dialysis, and tissue plasminogen activator, 1991 sales approximately 200 million, for treating heart attack victims with blocked arteries (see Cardiovascularagents). [Pg.234]

If the inhibitor combines irreversibly with the enzyme—for example, by covalent attachment—the kinetic pattern seen is like that of noncompetitive inhibition, because the net effect is a loss of active enzyme. Usually, this type of inhibition can be distinguished from the noncompetitive, reversible inhibition case since the reaction of I with E (and/or ES) is not instantaneous. Instead, there is a time-dependent decrease in enzymatic activity as E + I El proceeds, and the rate of this inactivation can be followed. Also, unlike reversible inhibitions, dilution or dialysis of the enzyme inhibitor solution does not dissociate the El complex and restore enzyme activity. [Pg.447]

Luciferase-catalyzed luminescence of luciferin. Odontosyllis luciferin emits light in the presence of Mg2+, molecular oxygen and luciferase. The relationship between the luminescence intensity and the pH of the medium shows a broad optimum (Fig. 7.2.8). The luminescence reaction requires a divalent alkaline earth ion, of which Mg2+ is most effective (optimum concentration 30 mM). Monovalent cations such as Na+, K+, and NH have little effect, and many heavy metal ions, such as Hg2+, Cu2+, Co2+ and Zn2+, are generally inhibitory. The activity of crude preparations of luciferase progressively decreases by repeated dialysis and also by concentrating the solutions under reduced pressure. However, the decreased luciferase activity can be completely restored to the original activity by the addition of 1 mM HCN (added as KCN). The relationship between the concentration of HCN and the luciferase activity is shown in Fig. 7.2.9. Low concentrations of h and K3Fe(CN)6 also enhance luminescence, but their effects are only transient. [Pg.233]

The concentrated luciferase solution is dialyzed overnight against 4 liters of 1 mM Tris-HCl buffer, pH 8.5, containing, 0.1 mM EDTA and 3 mM DTT. Then luciferase is further purified on a column of DEAE-BioGel A (1 x 25 cm, Bio-Rad) by elution with a linear increase of NaCl from 0 to 100 mM in the same buffer as that used in dialysis. The purified luciferase had a specific activity (based on initial maximum intensity) of approximately 8.5 x 1014 quanta sec 1mD1Aj810. [Pg.253]

A class of allosteric activators of the Ca2+-sensing receptor that sensitizes the receptor to extracellular calcium and acts only in the presence but not in the absence of calcium. Calcimimetics can be used to treat various forms of hyperparathyroidism, although they are only approved for use in patients with end stage renal disease receiving dialysis treatment. [Pg.310]

Several cytokines are in clinical use that support immune responses, such as IL-2, DFNs, or colony-stimulating factors. IL-2 supports the proliferation and effector ftmction of T-lymphocytes in immune compromised patients such as after prolonged dialysis or HIV infection. IFNs support antiviral responses or antitumoral activities of phagocytes, NK cells, and cytotoxic T-lymphocytes. Colony-stimulatory factors enforce the formation of mature blood cells from progenitor cells, e.g., after chemo- or radiotherapy (G-CSF to generate neutrophils, TPO to generate platelets, EPO to generate erythrocytes). [Pg.616]

Water soluble protein with a relative molecular mass of ca. 32600, which particularly contains copper and zinc bound like chelate (ca. 4 gram atoms) and has superoxide-dismutase-activity. It is isolated from bovine liver or from hemolyzed, plasma free erythrocytes obtained from bovine blood. Purification by manyfold fractionated precipitation and solvolyse methods and definitive separation of the residual foreign proteins by denaturizing heating of the orgotein concentrate in buffer solution to ca. 65-70 C and gel filtration and/or dialysis. [Pg.1493]

Our experiments indicated that template DNA remained intact and functionally active after template polymerization. The luciferase-encoded plasmid pCl Luc recovered from the reduced complexes after dialysis was able to express luciferase at levels comparable to pClLuc that had not undergone template polymerization but was also reduced and dialyzed. [Pg.446]

Inhibitors should be removed from sample. An example is urinary phosphate, which can be removed by dialysis prior to measuring the urinary alkaline phosphatase activity (18). [Pg.185]

Crude polysaccharide fraction (GL-2) was prepared from the leaves of P. ginseng by hot water extraction, ethanol precipitation and dialysis, and GL-2 was fractionated by Cetavlon precipitation and weakly acidic polysaccharide fraction (GL-4) was obtained[3]. GL-4IIb2 was purified from GL-4 by DEAE-Sepharose CL-6B as described previousely [3]. In order to remove the color-materials, GL-4IIb2 was further purified by Q-Sepharose (C1 form), and the major fraction, eluted with 0.3 M NaCl, was repurifled by gel filtration on Bio-gel P-30 column to obtain purified active polysaccharide, GL-4IIb2. ... [Pg.624]

Cultures from different times of growth were collected. Culture fluids were cleared by passing through glass fibre filter. After dialysis for 16-18 h against distilled water at 5°C, filtrates were assayed for enzyme activities and proteins. [Pg.749]

Effect of dialysis Stem juice dialysed against distilled water for 16 hours. PG inhibitor activity was examined in the dialysate after 16 hours after removal of precipitate by centrifugation. Table 4 shows that the inhibitor is more or less non-dialysable although a part of its activity is lost during dialysis. Dialysis results in about 3 fold purification of the inhibitor. Dialysed inhibitor was used in subsquent studies. [Pg.802]

Recent applications of HPAEC-PAD are many and varied. A representative list includes quantitation of polyglucose metabolites in plasma of dialysis patients,148 analysis of heat-treated milk,149 carbohydrate content in lipopolysaccharides,150 phosphorylated sugars in tissue samples,151 composition of soybean meal,152 carbohydrate composition of recombinant modified tissue plasminogen activator,153 analysis of cyclization products from an enzyme reaction,154 carbohydrate content of glycoconjugate vaccines,155 and monitoring of patients with rheumatoid arthritis.156... [Pg.299]

With either type of dialysis, studies suggest that recovery of renal function is decreased in ARF patients who undergo dialysis compared with those not requiring dialysis. Decreased recovery of renal function may be due to hemodialysis-induced hypotension causing additional ischemic injury to the kidney. Also, exposure of a patient s blood to bioincompatible dialysis membranes (cuprophane or cellulose acetate) results in complement and leukocyte activation which can lead to neutrophil infiltration into the kidney and release of vasoconstrictive substances that can prolong renal dysfunction.26 Synthetic membranes composed of substances such as polysulfone, polyacrylonitrile, and polymethylmethacrylate are considered to be more biocompatible and would be less likely to activate complement. Synthetic membranes are generally more expensive than cellulose-based membranes. Several recent meta-analyses found no difference in mortality between biocompatible and bioincompatible membranes. Whether biocompatible membranes lead to better patient outcomes continues to be debated. [Pg.368]


See other pages where Dialysis active is mentioned: [Pg.62]    [Pg.300]    [Pg.387]    [Pg.62]    [Pg.300]    [Pg.387]    [Pg.349]    [Pg.515]    [Pg.140]    [Pg.490]    [Pg.490]    [Pg.295]    [Pg.87]    [Pg.175]    [Pg.311]    [Pg.174]    [Pg.521]    [Pg.539]    [Pg.196]    [Pg.1569]    [Pg.220]    [Pg.305]    [Pg.6]    [Pg.189]    [Pg.338]    [Pg.401]    [Pg.724]    [Pg.762]    [Pg.145]    [Pg.258]    [Pg.79]    [Pg.129]    [Pg.62]    [Pg.130]    [Pg.258]    [Pg.1130]    [Pg.158]   
See also in sourсe #XX -- [ Pg.3 , Pg.1453 ]




SEARCH



Dialysis

Dialysis membranes complement-activating

Donnan (Active) Dialysis

Enzymic activity, effect dialysis

© 2024 chempedia.info