Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dialkyl-addition

The Addition of Two Alkyl Groups to an Alkyne Dialkyl-addition... [Pg.877]

Additives acting on the pour point also modify the crystal size and, in addition, decrease the cohesive forces between crystals, allowing flow at lower temperatures. These additives are also copolymers containing vinyl esters, alkyl acrylates, or alkyl fumarates. In addition, formulations containing surfactants, such as the amides or fatty acid salts and long-chain dialkyl-amines, have an effect both on the cold filter plugging point and the pour point. [Pg.353]

However, the most widely used materials are the zinc dialkyl-dithiophosphates that have an anti-wear effect in addition to their antioxidant power and, besides, offer an attractive cost/effectiveness ratio. [Pg.358]

Esters are alkylated in the presence of strong bases in aprotic solvents. A common combination is LDA in tetrabydrofuran at low temperatures. Equimolar amounts of base are sufficient and only the mono-carbanion Js formed. After addition of one mole of alkyl halide the products form rapidly, and no dialkylation, which is a problem in the presence of excess base, is possible. Addition of one more mole of LDA and of another alkyl halide leads to asymmetric dialkylation of one or-carbon atom in high yield (R.J. Cregge, 1973). [Pg.22]

Adducts from various quaternary salts have been isolated, in reactions with aldehydes, a-ketoaldehydes, dialkylacylphosphonates and dialkyl-phosphonates, isocyanates, isothiocyanates, and so forth (Scheme 15) (36). The ylid (11) resulting from removal of a Cj proton from 3.4-dimethyl-S-p-hydroxyethylthiazolium iodide by NEtj in DMF gives with phenylisothiocyanate the stable dipolar adduct (12) that has been identified by its NMR spectrum and reactional product, such as acid addition and thiazolidine obtention via NaBH4 reduction (Scheme 16) (35). It must be mentioned that the adduct issued from di-p-tolylcarbodiimide is separated in its halohydrogenated form. An alkaline treatment occasions an easy ring expansion into a 1,4-thiazine derivative (Scheme 17) (35). [Pg.35]

In cationic polymerization the active species is the ion which is formed by the addition of a proton from the initiator system to a monomer. For vinyl monomers the type of substituents which promote this type of polymerization are those which are electron supplying, like alkyl, 1,1-dialkyl, aryl, and alkoxy. Isobutylene and a-methyl styrene are examples of monomers which have been polymerized via cationic intermediates. [Pg.411]

Acrolein at a concentration of <500 ppm is also used to protect Hquid fuels against microorganisms. The dialkyl acetals of acrolein are also useful in this apphcation. In addition, the growth of algae, aquatic weeds, and moUusks in recirculating process water systems is also controlled by acrolein. [Pg.128]

Aromatic and heterocycHc compounds are formylated by reaction with dialkyl- or alkylarylformamides in the presence of phosphoms oxychloride or phosgene (Vilsmeier aldehyde synthesis) (125). The Vilsmeier reaction is a Friedel-Crafts type formylation (126), since the intermediate cation formed by the interaction of phosphoms oxychloride with formamide is a typical electrophilic reagent. Ionic addition compounds of formamide with phosgene or phosphoms oxychloride are also known (127). [Pg.559]

In steel-on-steel lubrication with a zinc dialkyl dithiophosphate additive, a complex surface paste appears to form first of zinc particles and iron dithiophosphate. The iron dithiophosphate then thermally degrades to a brown surface film of ZnS, ZnO, FeO, plus some iron and zinc... [Pg.241]

Hydrochloric acid [7647-01-0], which is formed as by-product from unreacted chloroacetic acid, is fed into an absorption column. After the addition of acid and alcohol is complete, the mixture is heated at reflux for 6—8 h, whereby the intermediate malonic acid ester monoamide is hydroly2ed to a dialkyl malonate. The pure ester is obtained from the mixture of cmde esters by extraction with ben2ene [71-43-2], toluene [108-88-3], or xylene [1330-20-7]. The organic phase is washed with dilute sodium hydroxide [1310-73-2] to remove small amounts of the monoester. The diester is then separated from solvent by distillation at atmospheric pressure, and the malonic ester obtained by redistillation under vacuum as a colorless Hquid with a minimum assay of 99%. The aqueous phase contains considerable amounts of mineral acid and salts and must be treated before being fed to the waste treatment plant. The process is suitable for both the dimethyl and diethyl esters. The yield based on sodium chloroacetate is 75—85%. Various low molecular mass hydrocarbons, some of them partially chlorinated, are formed as by-products. Although a relatively simple plant is sufficient for the reaction itself, a si2eable investment is required for treatment of the wastewater and exhaust gas. [Pg.467]

Unsymmetrical dialkyl peroxides are obtained by the reaction of alkyl hydroperoxides with a substrate, ie, R H, from which a hydrogen can be abstracted readily in the presence of certain cobalt, copper, or manganese salts (eq. 30). However, this process is not efficient since two moles of the hydroperoxide are consumed per mole of dialkyl peroxide produced. In addition, side reactions involving free radicals produce undesired by-products (44,66). [Pg.109]

Dialkyl and diaryl dithiophosphoric acids are the bases of many high pressure lubricants, oil additives (see Lubrication and lubricants), and ore flotation chemicals (see Mineral recovery and processing). Organophosphoms insecticides such as Parathion are made by chlorination of the appropriate diaLkyl dithiophosphate and subsequent reaction of the intermediate dialkyl thiophosphoric chloride with sodium -nitrophenolate according to the following (see... [Pg.364]

Mixed mono- and dialkyl are used as catalysts for resin curing and as intermediates for fire retardants, oil additives, antistatic agents (qv), and extraction solvents. An equimolar mixture of mono- and dialkyl acid phosphates are formed at a 1 6 mole ratio of oxide to alcohol. [Pg.373]

Addition of dialkyl fumarates to DAP accelerates polymerization maximum rates are obtained for 1 1 molar feeds (41). Methyl aUyl fumarate [74856-71-6] (MAF), CgH QO, homopolymerizes much faster than methyl aUyl maleate [51304-28-0] (MAM) and gelation occurs at low conversion more cyclization occurs with MAM. The greater reactivity of the fumarate double bond is shown in copolymerization of MAF with styrene in bulk. The maximum rate of copolymerization occurs from monomer ratios, almost 1 1 molar, but no maximum is observed from MAM and styrene. Styrene hinders cyclization of both MAF and MAM. [Pg.87]

In tanneries, sodium bisulfite is used to accelerate the unhairing action of lime. It is also used as a chemical reagent ia the synthesis of surfactants (qv). Addition to alpha-olefins under radical catalyzed conditions yields sodium alkylsulfonates (wetting agents). The addition of sodium bisulfite under base-catalyzed conditions to dialkyl maleates yields the sulfosucciaates. [Pg.150]

Detergents have been manufactured from long-chain alkenes and sulfuhc acid, especially those obtained from shale oil or cracking of petroleum wax. These are sulfated with 90—98 wt % acid at 10—15°C for a 5-min contact time and at an acid—alkene molar ratio of 2 1 (82). Dialkyl sulfate initially forms when 96 wt % acid is added to 1-dodecene at 0°C, but it is subsequently converted to the hydrogen sulfate in 80% yield upon the further addition of sulfuhc acid. The yield can be increased to 90% by using 98 wt % sulfuhc acid and pentane as the solvent at -15°C (83). [Pg.200]

Mixtures of a titanium complex of saturated diols, such as TYZOR OGT, and a titanium acylate, such as bis- -butyl-bis-caproic acid titanate, do not have a yellowing or discoloring effect on white inks used to print polyolefin surfaces (506). The complexes formed by the reaction of one or two moles of diethyl citrate with TYZOR TPT have an insignificant color on their own and do not generate color with phenol-based antioxidants (507). The complexes formed by the addition of a mixture of mono- and dialkyl phosphate esters to TYZOR TBT are also low color-generating, adhesion-promoting additives for use in printing polyolefin films (508). [Pg.163]

The NOBS system undergoes an additional reaction that forms a diacyl peroxide as a result of the nucleophilic attack of the peracid anion on the NOBS precursor as shown in equation 21. This undesirable side reaction can be minimized by the use of an excess molar quantity of hydrogen peroxide (91,96) or by the use of shorter dialkyl chain acid derivatives. However, the use of these acid derivatives also appears to result in less efficient bleaching. The dependence of the acid group on the side product formation is apparentiy the result of the proximity of the newly formed peracid to unreacted NOBS in the micellar environment (91). A variety of other peracid precursor stmctures can be found (97—118). [Pg.147]

Protonated /V-chloroalkyl amines under the influence of heat or uv light rearrange to piperidines or pyrroHdines (Hofmann-Lriffler reaction) (88). The free-radical addition of alkyl and dialkyl-/V-chloramines to olefins and acetylenes yields P-chloroalkji-, P-chloroalkenyl-, and 8-chloroalkenylamines (89). Various N-hiomo- and N-chloropolyfluoroaLkylarnines have been synthesized whose addition products to olefinic double bonds can be photolyzed to fluoroazaalkenes (90). [Pg.455]

Additions of other nucleophiles to pyridopyrazines have been described in a number of cases for instance, Grignard reagents give 2,3-dialkyl compounds (398) (or 6-alkyl analogues with 2,3-diaryl compounds) (76BSF251), and other workers have also observed 6-addition <71CR(C)(273)1529). [Pg.252]


See other pages where Dialkyl-addition is mentioned: [Pg.1026]    [Pg.225]    [Pg.232]    [Pg.1026]    [Pg.225]    [Pg.232]    [Pg.248]    [Pg.99]    [Pg.135]    [Pg.386]    [Pg.490]    [Pg.241]    [Pg.470]    [Pg.115]    [Pg.193]    [Pg.383]    [Pg.84]    [Pg.368]    [Pg.86]    [Pg.469]    [Pg.190]    [Pg.39]    [Pg.40]   
See also in sourсe #XX -- [ Pg.877 ]




SEARCH



Asymmetric dialkyl zinc addition

Dialkyl anions oxidative addition

Dialkyl zinc addition

Phosphorous acid, dialkyl esters, addition

© 2024 chempedia.info