Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dialkyl zinc addition

Another very elegant approach for synthesis of this class of compounds was developed by Soai and Niwa/ who banked on the proline-derived aminol-catalyzed dialkyl zinc addition onto alkynals. The e.e. value of the products, however, was only in the range 64 to 78% (Scheme 21.8). Even though the e.e. was not very impressive, this method attracted several other research groups to explore the strategy by modifying the chiral catalyst. [Pg.149]

In steel-on-steel lubrication with a zinc dialkyl dithiophosphate additive, a complex surface paste appears to form first of zinc particles and iron dithiophosphate. The iron dithiophosphate then thermally degrades to a brown surface film of ZnS, ZnO, FeO, plus some iron and zinc... [Pg.241]

Asymmetric conjugate addition of dialkyl or diaryl zincs for the formation of all carbon quaternary chiral centres was demonstrated by the combination of the chiral 123 and Cu(OTf)2-C H (2.5 mol% each component). Yields of 94-98% and ee of up to 93% were observed in some cases. Interestingly, the reactions with dialkyl zincs proceed in the opposite enantioselective sense to the ones with diaryl zincs, which has been rationalised by coordination of the opposite enantiofaces of the prochiral enone in the alkyl- and aryl-cuprate intermediates, which precedes the C-C bond formation, and determines the configuration of the product. The copper enolate intermediates can also be trapped by TMS triflate or triflic anhydride giving directly the versatile chiral enolsilanes or enoltriflates that can be used in further transformations (Scheme 2.30) [110],... [Pg.55]

Scheme 1.22 Kitamura and Noyori s mechanism of the asymmetric addition of dialkyl zinc to aryl aldehydes. Scheme 1.22 Kitamura and Noyori s mechanism of the asymmetric addition of dialkyl zinc to aryl aldehydes.
Dialkyl zinc compounds form phosphine complexes of formula RZnP(SiMe3)2 on addition of one equivalent of bis(trimethylsilyl)phosphine. Solution and solid-state studies showed that the complexes are dimeric or trimeric in solution or the solid state. Bis(trimethylsilyl)phosphido-methylzinc crystallizes as a trimeric molecule with a Zn3P3 core in the twist-boat conformation. Bis(trimethylsilyl)phosphido- -butylzinc, shows a similar central Zn3P3 fragment. The sterically more demanding trimethylsilylmethyl substituent forms a dimeric species of bis(trimethylsilyl) phosphido-trimethylsilylmethylzinc. Solution studies of bis(trimethylsilyl)phosphido- .vo-propyl-zinc demonstrate a temperature-dependent equilibrium of the dimeric and trimeric species and the crystalline state contains a 1 1 mixture of these two oligomers. A monomeric bis(trimethyl-silyl)phosphido-tris(trimethylsilyl)methylzinc has also been synthesized.313... [Pg.1170]

The selectivity of the aldol addition can be rationalized in terms of a Zimmer -man-Traxler transition-state model with TS-2-50 having the lowest energy and leading to dr-values of >95 5 for 2-51 and 2-52 [18]. The chiral copper complex, responsible for the enantioselective 1,4-addition of the dialkyl zinc derivative in the first anionic transformation, seems to have no influence on the aldol addition. To facilitate the ee-determination of the domino Michael/aldol products and to show that 2-51 and 2-52 are l -epimers, the mixture of the two compounds was oxidized to the corresponding diketones 2-53. [Pg.55]

Addition of insoluble NaOMe and KOMe to benzene solutions of ZnR2, Scheme 57, gave soluble 1 2 zincates of the composition M[(R2Zn)2OMe] 73 (M = Na, K R = Et, Bu11, Bus, Me3SiCH2).128 By contrast, combining dialkyl-zincs with benzene-soluble KOBuc produces the dianionic zincate 74. [Pg.350]

The Cu(I)-catalysed asymmetric conjugate addition of dialkyl zinc reagents to 3-nitrocoumarins 45 gives high yields of 3,4-dihydrocoumarins in a pH-dependent diastereoisomeric ratio. Subsequent decarboxylation gives optically active p-aryl nitroalkanes... [Pg.327]

Where possible, it may be most economical to effect a chiral transformation on a pre-formed, pro-chiral ring. Ben Feringa of the University of Groningen prepared (Chem Commun. 2005, 1711) the enone 2 from 4-methoxypyridine 1. Cu -catalyzed conjugate addition of dialkyl zincs to 2 proceeded in up 96% . Pd-mediated allylation of the intermediate zinc enolate led to 3, with the two alkyl subsituents exclusively trans to each other. [Pg.101]

Transition State Models. The stoichiometry of aldehyde, dialkylzinc, and the DAIB auxiliary strongly affects reactivity (Scheme 9) (3). Ethylation of benzaldehyde does not occur in toluene at 0°C without added amino alcohol however, addition of 100 mol % of DAIB to diethylzinc does not cause the reaction either. Only the presence of a small amount (a few percent) of the amino alcohol accelerates the organometallic reaction efficiently to give the alkylation product in high yield. Dialkyl-zincs, upon reaction with DAIB, eliminate alkanes to generate alkylzinc alkoxides, which are unable to alkylate aldehydes. Instead, the alkylzinc alkoxides act as excellent catalysts or, more correctly, catalyst dimers (as shown below) for reaction between dialkylzincs and aldehydes. The unique dependence of the reactivity on the stoichiometry indicates that two zinc atoms per aldehyde are responsible for the alkyl transfer reaction. [Pg.141]

In another study Feringa et al. [20] reported a catalytic enantioselective three-component tandem conjugate addition-aldol reaction of dialkyl zincs. Here, zinc enolates were generated in situ via catalytic enantioselective Michael addition of dialkylzinc compounds to cydohexenone in the presence of a chiral Cu catalyst. Their diastereoselective reaction with an aldehyde then gave trans-2,3-disubstituted cyclohexanones in up to 92% yields and up to >99% ees (Scheme 9.11). [Pg.282]

As discussed in Sects. 2.1 and 2.2.8 control of molar mass is an important aspect in the large-scale polymerization of dienes. In Nd-catalyzed polymerizations the control of molar mass is unique amongst Ziegler/Natta catalyst systems as standard molar mass control agents such as hydrogen, 1,2-butadiene and cyclooctadiene which are well established for Ni- and Co-systems do not work with Nd catalysts [82,206,207]. The only known additives which allow for the regulation of molar mass without catalyst deactivation are aluminum alkyls, magnesium alkyls, and dialkyl zinc. [Pg.124]

However, an encouraging result was obtained very recently for the 1,4-conjugate addition of dialkyl zinc to a variety of Michael acceptors catalyzed by copper. Alexakis, Roland and coworkers have investigated the addition of diethyl zinc to cycloheptenone and observed an enantiomeric excess of 93% (95% yield) in the presence of Cu(OAc)2 and the silver carbene derivative of imidazolium 1 (Scheme 3) [10]. Silver carbene complexes are efficient transfer agents to copper(II) and therefore the potentially harmful use of a base to generate the catalytic species is avoided. [Pg.120]

Building on the success of Woodward s use of an achiral NHC to catalyze the conjugate addition of dialkyl zincs, Alexakis and Roland simultaneously reported the use of chiral NHCs to achieve the asymmetric addition into enones. In Alexakis s system, the catalyst was generated in situ by addition of BuLi to a suspension of imidazolium salt 19, Cu(OTf)2, and enone in toluene followed by addition of Et2Zn (Eq. 28) [63]. While conversions and yields were found to be nearly quantitative, ee values were moderate with 51% being the highest reported. [Pg.182]

Scheme 25 One pot asymmetric addition of dialkyl zinc to a cobalt complexed propargyl aldehyde followed by PKR... Scheme 25 One pot asymmetric addition of dialkyl zinc to a cobalt complexed propargyl aldehyde followed by PKR...
Knowledge on these kinds of reactions is being accumulated for thermal reactions, which is also relevant for photoreactions. The topic is thoroughly discussed by Todd [132]. Soai and his group have presented a very efficient amplification system, the addition of dialkyl zinc to pyridine-3-carbaldehyde 49 [16,133], in which the chiral alcohol produced catalyzes the addition. [Pg.38]

Transformations involving chiral catalysts most efficiently lead to optically active products. The degree of enantioselectivity rather than the efficiency of the catalytic cycle has up to now been in the center of interest. Compared to hydrogenations, catalytic oxidations or C-C bond formations are much more complex processes and still under development. In the case of catalytic additions of dialkyl zinc compounds[l], allylstan-nanes [2], allyl silanes [3], and silyl enolethers [4] to aldehydes, the degree of asymmetric induction is less of a problem than the turnover number and substrate tolerance. Chiral Lewis acids for the enantioselective Mukaiyama reaction have been known for some time [4a - 4c], and recently the binaphthol-titanium complexes 1 [2c - 2e, 2jl and 2 [2b, 2i] have been found to catalyze the addition of allyl stannanes to aldehydes quite efficiently. It has been reported recently that a more active catalyst results upon addition of Me SiSfi-Pr) [2k] or Et2BS( -Pr) [21, 2m] to bi-naphthol-Ti(IV) preparations. [Pg.166]

Table 1 Enantioselective 1,2-addition of dialkyl zinc to aldehydes... Table 1 Enantioselective 1,2-addition of dialkyl zinc to aldehydes...
Catalytic reactions have the advantage over the methods discussed so far in that the chiral catalyst need not be added in stoichiometric amounts, but only in very small quantities, which is important if not only the metal (very often a precious one) but also the chiral ligand are expensive. Among the ferrocenes, phosphines are by far the most important catalysts for stereoselective reactions, and are covered in Chapter 2 of this book. We will therefore focus here mainly on the catalytic applications of chiral ferrocenes not containing phosphine groups. Only recently, some progress has been made with such compounds, mainly with sulfides and selenides, and with amino alcohols in the side chain (for this topic, see Chapter 3 on the addition of dialkyl zinc to aldehydes). [Pg.212]

Notable were highly enantioselective additions of N-phosphonyl imines with dialkyl zinc or hydroxyketones and a one-pot reaction of alkynylzirconocenes with alkynyl phosphazenes and zinc carbenoids to give single isomer cyclopropylphosphonamides. The importance of enantioselective and dynamic kinetic asymmetric transformations is illustrated in many publications. Other interesting reports cover the use of phosphoramidates for the synthesis of allylic amines as well as the first example of C-P cleavage of a-aminophosphono acids using periodate. [Pg.7]

Organozinc compounds add to conjugated systems. The use of chiral ligands is effective for conjugate addition of diaUcylzinc compounds to a,p-unsaturated ketones, esters, and so on, including conjugated lactones." Many dialkyl-zinc compounds can be used, including vinylzinc compounds.Dialkylzinc... [Pg.1116]

Zinc dust was previously activated by the addition of carcinogenic 1,2-dibromoethane [0.026 equiv relative to zinc dust (Zn)] followed by chlorotrimethylsilane (TMSCl) (0.018 equiv relative to Zn), which gave rise to serious issues of poor reproducibility and requirement of excess iodide 80 (2.5 equiv relative to 8). Because the Fukuyama coupling reaction has been reported not to proceed with dialkyl zinc (R2Zn), the Schlenk equilibrium of the zinc reagent should lie to the left to achieve... [Pg.299]

Though not so general as the reactions we have just seen, the catalysed addition of dialkyl zincs to certain aldehydes sets a new standard for catalysis that needs some explaining. Dialkyl zincs add to the pyrimidine aldehyde 216 under catalysis from amino alcohols, amino acids such as leucine 219, hydroxy acids, and simple secondary alcohols or amines such as 218 to give enantiomerically enriched alcohols 217. Plain sailing so far, except for the extraordinary range of catalysts. [Pg.592]


See other pages where Dialkyl zinc addition is mentioned: [Pg.114]    [Pg.114]    [Pg.241]    [Pg.182]    [Pg.695]    [Pg.99]    [Pg.862]    [Pg.107]    [Pg.241]    [Pg.110]    [Pg.241]    [Pg.176]    [Pg.38]    [Pg.81]    [Pg.107]    [Pg.193]    [Pg.160]    [Pg.241]    [Pg.190]    [Pg.15]    [Pg.290]    [Pg.263]   


SEARCH



Dialkyl zinc

Dialkyl-addition

Zinc dialkyls

© 2024 chempedia.info