Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature stable detonator

The presence of turbulizing chambers makes the onset of detonation more stable and fixed to a definite place depending on chamber geometry, mixture composition, and initial temperature ... [Pg.312]

Chlorine heptoxide is more stable than either chlorine monoxide or chlorine dioxide however, the CX C) detonates when heated or subjected to shock. It melts at —91.5°C, bods at 80°C, has a molecular weight of 182.914, a heat of vapori2ation of 34.7 kj/mol (8.29 kcal/mol), and, at 0°C, a vapor pressure of 3.2 kPa (23.7 mm Hg) and a density of 1.86 g/mL (14,15). The infrared spectmm is consistent with the stmcture O CIOCIO (16). Cl O decomposes to chlorine and oxygen at low (0.2—10.7 kPa (1.5—80 mm Hg)) pressures and in a temperature range of 100—120°C (17). It is soluble in ben2ene, slowly attacking the solvent with water to form perchloric acid it also reacts with iodine to form iodine pentoxide and explodes on contact with a flame or by percussion. Reaction with olefins yields the impact-sensitive alkyl perchlorates (18). [Pg.65]

Decomposition Hazards. The main causes of unintended decompositions of organic peroxides are heat energy from heating sources and mechanical shock, eg, impact or friction. In addition, certain contaminants, ie, metal salts, amines, acids, and bases, initiate or accelerate organic peroxide decompositions at temperatures at which the peroxide is normally stable. These reactions also Hberate heat, thus further accelerating the decomposition. Commercial products often contain diluents that desensitize neat peroxides to these hazards. Commercial organic peroxide decompositions are low order deflagrations rather than detonations (279). [Pg.132]

The diazirines are of special interest because of their isomerism with the aliphatic diazo compounds. The diazirines show considerable differences in their properties from the aliphatic diazo compounds, except in their explosive nature. The compounds 3-methyl-3-ethyl-diazirine and 3,3-diethyldiazirine prepared by Paulsen detonated on shock and on heating. Small quantities of 3,3-pentamethylenediazirine (68) can be distilled at normal pressures (bp 109°C). On overheating, explosion followed. 3-n-Propyldiazirine exploded on attempts to distil it a little above room temperature. 3-Methyldiazirine is stable as a gas, but on attempting to condense ca. 100 mg for vapor pressure measurements, it detonated with complete destruction of the apparatus." Diazirine (67) decomposed at once when a sample which had been condensed in dry ice was taken out of the cold trap. Work with the lower molecular weight diazirines in condensed phases should therefore be avoided. [Pg.125]

An endothermic compound, which is hardiy stable thermodynamically. However, it only decomposes under extreme conditions (very violent shock, high temperature). When it is involved in a reaction, this compound can combust or detonate easily because of the exothermicity of the transformation. Since it is hardly ever handled in the pure state (it forms when compounds containing arsenic are handled) it gives rise to a limited number of accidents. [Pg.211]

A mixture of bromine in the gaseous state and nitrogen was in contact with sodium azide which detonated, and was explained by formation of Br-Ns bromine azide, which like all compounds that have halogen-nitrogen bonds, is hardly stable. Thus, bromine was mixed with ammonia at ambient temperature. The mixture was then cooled down to -95°C and red oil was formed, which detonated when the mixture was heated and reached -67°C. It formed the following complex ... [Pg.213]

This is hardly stable and it was not until suitable conditions of dilution were found that it was possible to handle it in industry. Even at low temperatures it detonates easily, when it is in the solid or liquid state. Detonations occurred during attempts at liquefaction. Ite dilution in nitrogen at -181° stabilises it, but there was an accident under these conditions, which was due to the presence of carborundum that makes it sensitive to impact. In the gaseous state, it detonates at a pressure of 1.4 bar and above. It can only be kept under pressure when it is in a solution of acetone in which it is highly soluble. Alcohols to C4, ketones to C4, diols C3 and C4, and carboxylic acids to C4 all play the same stabilising role as acetone. [Pg.236]

Acetylene mixed with acetic acid is stable at 70°C, but an accidental temperature rise in a cylinder containing a solution of acetyiene in acetic acid resuited in a temperature rise reaching 185°C on a specific point of the cylinder walls. There was an extreme heating of the cylinder, which could not be controlled by severe external cooling, and caused the cylinder to detonate. [Pg.236]

The polyperoxidation of 1,3-dienes is even more dangerous because they are more reactive and some of their polyperoxides are insoluble. With butadiene, the polyperoxidation takes place at temperatures lower than -113 C the oxygen is absorbed very quickly and forms insoluble polyperoxides that precipitate. It was estimated that at a temperature of 25°C the critical mass of such a compound consists of a sphere of diameter 9 cm. This diameter decreases quickly with the temperature. Isoprene behaves in the same way, but its polyperoxide is soluble, in these conditions, the monomer can absorb any temperature rise which would be caused by the beginning of a decomposition, thus reducing risks. If the monomer evaporates, a gum that detonates at 20°C is formed if the medium is stirred. With cyclopentadiene, polyperoxide is more stable and only detonates at a high temperature. [Pg.242]

Pyruvic acid is not stable at ambient temperature when it is stored for a long period of time. It can only be stored in a refrigerated room. A bottle of this acid was stored in a laboratory at 25°C and detonated, probably because of the overpressure created by the formation of carbon dioxide. Indeed, with diacids and complex acids the decomposition is made by decarboxylation. In this particular case, this decomposition should give rise to acetaldehyde. It could be asked whether, in the exothermic conditions of this decomposition, a polymerisation of this aldehyde (see Aldehydes-ketones on p.310) did not make the situation worse. [Pg.318]

Mercury fulminate is a pale brownish solid, insoluble in cold water, but dissolving slightly in hot water to a solution which does not give the normal mercury reactions. In cold conditions it is stable, but at higher temperatures gradually decomposes and loses strength as an explosive. It has a density of 4-45 g ml-1 and a velocity of detonation, when compressed to a practical density of 2-5, of about 3600 m s-1. [Pg.95]

It can be detonated on impact, but is normally considered a stable intermediate (m.p. 288° C), suitable for purification of pyridine [1]. Occasionally explosions have occurred when the salt was disturbed [2], which have been variously attributed to presence of ethyl perchlorate, ammonium perchlorate, or chlorates. A sample was being dried in a glass vacuum desiccator. Over-enthusiastic release of vacuum distributed some of the salt onto the lid. The grinding action as the lid was slid off initiated explosion of this, shattering the lid [6], A safer preparative modification is described [3], It explodes on heating to above 335°C, or at a lower temperature if ammonium perchlorate is present [4], A violent explosion which occurred during the final distillation according to the preferred method [3] was recorded [5],... [Pg.612]

Though regarded as one of the more stable peroxides, it becomes shock-sensitive on heating, and self-accelerating decomposition sets in at 49° C [1]. One of the recently calculated values of 46 and 42°C for induction periods of 7 and 60 days, respectively, for critical ignition temperatures is closely similar to that (4577 days) previously recorded. Autocatalytic combustion of the polymerisation initiator is exhibited. Although not ordinarily shock sensitive, it responds to a detonator [2],... [Pg.1287]

Tetrazene (C2H8N10O) is a pale yellow crystalline explosive generally used in ignition caps, where a small amount is added to the explosive composition to improve its sensitivity to percussion and friction. Tetrazene is not suitable for filling detonators because its compaction properties make the transition from burning to detonation very difficult. This primary explosive is stable in ambient temperatures. Its ignition temperature is lower and it is slightly more sensitive to impact than mercury fulminate. [Pg.52]

Most of the isolated diacyl (including sulfonyl) peroxides are solids with relatively low decomposition temperatures, and are explosive, sensitive to shock, heat or friction. Several, particularly the lower members, will detonate on the slightest disturbance. Autocatalytic (self-accelerating) decomposition, which is promoted by tertiary amines, is involved [1]. Solvents suitable for preparation of safe solutions of diacetyl, dipropionyl, diisobutyryl and di-2-phenylpropionyl peroxides are disclosed [2], The class is reviewed, including hazards and safety measures [3], Cyclic diacyl peroxides are more stable, but scarcely to be trusted. Individually indexed compounds are ... [Pg.108]

Catalytic forms of copper, mercury and silver acetylides, supported on alumina, carbon or silica and used for polymerisation of alkanes, are relatively stable [3], In contact with acetylene, silver and mercury salts will also give explosive acetylides, the mercury derivatives being complex [4], Many of the metal acetylides react violently with oxidants. Impact sensitivities of the dry copper derivatives of acetylene, buten-3-yne and l,3-hexadien-5-yne were determined as 2.4, 2.4 and 4.0 kg m, respectively. The copper derivative of a polyacetylene mixture generated by low-temperature polymerisation of acetylene detonated under 1.2 kg m impact. Sensitivities were much lower for the moist compounds [5], Explosive copper and silver derivatives give non-explosive complexes with trimethyl-, tributyl- or triphenyl-phosphine [6], Formation of silver acetylide on silver-containing solders needs higher acetylene and ammonia concentrations than for formation of copper acetylide. Acetylides are always formed on brass and copper or on silver-containing solders in an atmosphere of acetylene derived from calcium carbide (and which contains traces of phosphine). Silver acetylide is a more efficient explosion initiator than copper acetylide [7],... [Pg.222]


See other pages where Temperature stable detonator is mentioned: [Pg.10]    [Pg.547]    [Pg.588]    [Pg.588]    [Pg.204]    [Pg.207]    [Pg.253]    [Pg.204]    [Pg.207]    [Pg.122]    [Pg.13]    [Pg.40]    [Pg.179]    [Pg.53]    [Pg.132]    [Pg.454]    [Pg.2318]    [Pg.310]    [Pg.243]    [Pg.188]    [Pg.242]    [Pg.331]    [Pg.1602]    [Pg.536]    [Pg.180]    [Pg.52]    [Pg.54]    [Pg.368]    [Pg.369]    [Pg.322]    [Pg.389]    [Pg.293]    [Pg.203]    [Pg.303]   
See also in sourсe #XX -- [ Pg.253 ]




SEARCH



Detonation temperature

© 2024 chempedia.info