Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detection limits water

The analysis of cigarette smoke for 16 different polyaromatic hydrocarbons is described in this experiment. Separations are carried out using a polymeric bonded silica column with a mobile phase of 50% v/v water, 40% v/v acetonitrile, and 10% v/v tetrahydrofuran. A notable feature of this experiment is the evaluation of two means of detection. The ability to improve sensitivity by selecting the optimum excitation and emission wavelengths when using a fluorescence detector is demonstrated. A comparison of fluorescence detection with absorbance detection shows that better detection limits are obtained when using fluorescence. [Pg.613]

Spike recoveries for samples are used to detect systematic errors due to the sample matrix or the stability of the sample after its collection. Ideally, samples should be spiked in the field at a concentration between 1 and 10 times the expected concentration of the analyte or 5 to 50 times the method s detection limit, whichever is larger. If the recovery for a field spike is unacceptable, then a sample is spiked in the laboratory and analyzed immediately. If the recovery for the laboratory spike is acceptable, then the poor recovery for the field spike may be due to the sample s deterioration during storage. When the recovery for the laboratory spike also is unacceptable, the most probable cause is a matrix-dependent relationship between the analytical signal and the concentration of the analyte. In this case the samples should be analyzed by the method of standard additions. Typical limits for acceptable spike recoveries for the analysis of waters and wastewaters are shown in Table 15.1. ... [Pg.711]

As httle as lO " g of ATP can be detected with carefiiUy purified luciferase. Commercial luciferase contains enough residual ATP to cause background emission and increase the detection limit to 10 g (294). The method has been used to determine bacterial concentrations in water. As few as lO" cells/mL of Lscherichia coli, which contains as Httle as 10 g of ATP per cell, can be detected (294). Numerous species of bacteria have been studied using this technique (293—295). [Pg.275]

Aminophenols have been detected in waste water by investigating uv absorptions at 220, 254, and 275 nm (87). These compounds can also be detected spectrophotometricaHy after derivatization at concentrations of 1 part per 100 million by reaction in acid solution with /V-(1-napbtby1)etby1enediamine [551-09-7] (88) or 4-(dimethylainino)ben2aldehyde [100-10-7] (89), and the Schiff base formed can be stabilized in chloroform by chelation to increase detection limits (90). [Pg.312]

The variety of AES techniques requires careful evaluation for selecting the proper approach to an analytical problem. Table 4 only suggests the various characteristics. More detailed treatment of detection limits must include consideration of spectral interferences (191). AES is the primary technique for metals analysis in ferrous and other alloys geological, environmental, and biological samples water analysis and process streams (192). [Pg.318]

An on-line concentration, isolation, and Hquid chromatographic separation method for the analysis of trace organics in natural waters has been described (63). Concentration and isolation are accompHshed with two precolumns connected in series the first acts as a filter for removal of interferences the second actually concentrates target solutes. The technique is appHcable even if no selective sorbent is available for the specific analyte of interest. Detection limits of less than 0.1 ppb were achieved for polar herbicides (qv) in the chlorotriazine and phenylurea classes. A novel method for deterrnination of tetracyclines in animal tissues and fluids was developed with sample extraction and cleanup based on tendency of tetracyclines to chelate with divalent metal ions (64). The metal chelate affinity precolumn was connected on-line to reversed-phase hplc column, and detection limits for several different tetracyclines in a variety of matrices were in the 10—50 ppb range. [Pg.245]

Since 1970, new analytical techniques, eg, ion chromatography, have been developed, and others, eg, atomic absorption and emission, have been improved (1—5). Detection limits for many chemicals have been dramatically lowered. Many wet chemical methods have been automated and are controlled by microprocessors which allow greater data output in a shorter time. Perhaps the best known continuous-flow analy2er for water analysis is the Autoanaly2er system manufactured by Technicon Instmments Corp. (Tarrytown, N.Y.) (6). Isolation of samples is maintained by pumping air bubbles into the flow line. Recently, flow-injection analysis has also become popular, and a theoretical comparison of it with the segmented flow analy2er has been made (7—9). [Pg.230]

Atomic absorption spectroscopy is an alternative to the colorimetric method. Arsine is stiU generated but is purged into a heated open-end tube furnace or an argon—hydrogen flame for atomi2ation of the arsenic and measurement. Arsenic can also be measured by direct sample injection into the graphite furnace. The detection limit with the air—acetylene flame is too high to be useful for most water analysis. [Pg.232]

Cumene is expected to exist almost entirely in the vapor phase in the atmosphere (13). In water, mixed cultures of microorganisms collected from various locations and depths in the Atiantic Ocean were all found to be capable of degrading cumene (14). A number of studies have examined the aerobic degradation of cumene in seawater and in groundwater (15,16). The results indicate that cumene would normally be naturally degraded to below detectable limits within a week to ten days. Cumene is tightly adsorbed by soil and is not significantly mobile in soil (17). [Pg.364]

The methods of investigation of metal species in natural waters must possess by well dividing ability and high sensitivity and selectivity to determination of several metal forms. The catalytic including chemiluminescent (CL) techniques and anodic stripping voltammetry (ASV) are the most useful to determination of trace metals and their forms. The methods considered ai e characterized by a low detection limits. Moreover, they allow detection of the most toxic form of metals, that is, metal free ions and labile complexes. [Pg.27]

Because of a wide use of nonionogenic surfactants (NIS) in many areas of production, medicine and in a life, they have become known hydrosphere pollutants. As a result there is a necessity of the control over their contents in natural waters. Now there exist a sufficient number of methods of NIS determination with different detection limits. As a rule, a preliminary concentration is used for surfactants various classes detection limits decrease. [Pg.107]

The results of simulation have been confirmed by determination of Fe traces in quai tz sand, Cu and Mo in flotation tails and Ag in waste fixing waters on BRA-17-02 analyzer based on X-ray gas-filled electroluminescent detector and on BRA-18 analyzer based on Si-drift detector. The results of the simulation conform satisfactory with the experimental data in the mentioned cases the optimum filtration results in 2 to 5 times lowering of the detection limit. [Pg.134]

The investigation leads to the elaboration of solid-phase spectrophotometric and test methods of different cationic surfactants determination in water. The detection limits of cationic surfactants with hydrocarbon radical length is 0.7 mg/dm, is 0.2 mg/dm, C is 0.009 mg/dm and is 0.003 mg/dm by using a 100 cm sample. Metrological performance of method was examined on the natural samples. Proposed method is highly sensitive, simple, rapid and guarantees ecological purity of analysis. [Pg.316]

Using the luminol photochemiluminescence it is possible to determine not only the nitrates (as reported by us earlier), but also the nitrites. The urotropin is added to the water sample, and the solution obtained is illuminated by the Hg lamp. The chemiluminescence is measured after the addition of basic luminol solution to the illuminated solution. The detection limit is 2-10 M. The nitrates contained in the drinking water do not interfere at tenfold excess. [Pg.403]

We have shown that known reaction of luminol with peroxydisulphate at low luminol concentrations takes place in the regime of controlled generation of SO ion-radicals at spontaneous destruction of peroxydisulphate. The detection limit for various types of antioxidants in water using this reaction is varied from 10 to 10 M. It is possible also to determine some polluting admixtures present in the atmosphere. The reagent used is the mixture of the luminol, base and K S O, which, once prepai ed, could be used during a working day. [Pg.403]

Solutions may typically be analyzed with up to 0.2% dissolved solids. This means a dilution factor of 1000. For example, an element that will give a 0.1 ppb detection limit in deionized water will give a detection limit of 100 ppb in a film dissolved in acid and diluted to 0.1% solids. [Pg.627]

Flow injection techniques can be used to inject sample volumes as small as 10 jiL into a flowing stream of water with little degradation of detection limits. Frit nebulizers have efficiencies as high as 94% and can be operated with as litde as 2 jiL of sample solution. [Pg.638]

Detection limits of 0.0001 to 0.01 mg/P in soil samples and 0.1 to 1.0 mg/ in water samples have been reported. Lappala (1984) reported the results of repeated sampling on successive days at a... [Pg.126]

Note Rhodamine 6G is a universal reagent which can also be incorporated in the TLC layers [4, 9] or added to the mobile phase [4], The spray reagent can also be made up in water [8], acetone [4, 6] or ammonia solution (c = 2.5 mol/1) [5]. The visual detection limit is most favorable when the water from the mobile phase or the detection reagent has not completely evaporated from the layer. This can be recognized by the fact that the background fluorescence has not turned from red to pink [4]. [Pg.405]

Groundwater has also been surveyed for methyl parathion. In a study of well water in selected California communities, methyl parathion was not detected (detection limit of 5 ppb) in the 54 wells sampled (Maddy et al. 1982), even though the insecticide had been used in the areas studied for over 15 years. An analysis of 358 wells in Wisconsin produced the same negative results (Krill and Sonzogni 1986). In a sampling of California well water for pesticide residues, no methyl parathion was detected in any of the well water samples (California EPA 1995). In a study to determine the residue levels of pesticides in shallow groundwater of the United States, water samples from 1,012 wells and 22 springs were analyzed. Methyl parathion was not detected in any of the water samples (Kolpin et al. 1998). In a study of water from near-surface aquifers in the Midwest, methyl parathion was not detected in any of the water samples from 94 wells that were analyzed for pesticide levels (Kolpin et al. 1995). [Pg.158]

Methyl parathion has been reported in groundwater in Idaho at a median level of 0.01 ppb with contamination due to a point source (EPA 1988c). A study of tap water in Ontario showed no detectable methyl parathion at a detection limit of 1 ng/L (Le Bel et al. 1979). [Pg.158]


See other pages where Detection limits water is mentioned: [Pg.105]    [Pg.234]    [Pg.105]    [Pg.234]    [Pg.50]    [Pg.524]    [Pg.144]    [Pg.320]    [Pg.363]    [Pg.246]    [Pg.248]    [Pg.410]    [Pg.276]    [Pg.88]    [Pg.111]    [Pg.160]    [Pg.174]    [Pg.241]    [Pg.346]    [Pg.357]    [Pg.625]    [Pg.262]    [Pg.197]    [Pg.280]    [Pg.369]    [Pg.152]    [Pg.284]    [Pg.239]    [Pg.10]    [Pg.233]    [Pg.181]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



Detectable limit

Detection limits

Detection limits, limitations

Detection-limiting

Water detecting

Water detection

Water limitation

© 2024 chempedia.info