Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SIMS detection limits

The advantages of SIMS are its high sensitivity (ppm detection limit for certain elements), its ability to detect hydrogen and the emission of molecular fragments which often bear tractable relationships with the parent... [Pg.1860]

Environment. Detection of environmental degradation products of nerve agents directly from the surface of plant leaves using static secondary ion mass spectrometry (sims) has been demonstrated (97). Pinacolylmethylphosphonic acid (PMPA), isopropylmethylphosphonic acid (IMPA), and ethylmethylphosphonic acid (EMPA) were spiked from aqueous samples onto philodendron leaves prior to analysis by static sims. The minimum detection limits on philodendron leaves were estimated to be between 40 and 0.4 ng/mm for PMPA and IMPA and between 40 and 4 ng/mm for EMPA. Sims analyses of IMPA adsorbed on 10 different crop leaves were also performed in order to investigate general apphcabiflty of static sims for... [Pg.247]

The most common application of dynamic SIMS is depth profiling elemental dopants and contaminants in materials at trace levels in areas as small as 10 pm in diameter. SIMS provides little or no chemical or molecular information because of the violent sputtering process. SIMS provides a measurement of the elemental impurity as a function of depth with detection limits in the ppm—ppt range. Quantification requires the use of standards and is complicated by changes in the chemistry of the sample in surface and interface regions (matrix efiects). Therefore, SIMS is almost never used to quantitadvely analyze materials for which standards have not been carefiilly prepared. The depth resoludon of SIMS is typically between 20 A and 300 A, and depends upon the analytical conditions and the sample type. SIMS is also used to measure bulk impurities (no depth resoludon) in a variety of materials with detection limits in the ppb-ppt range. [Pg.528]

Because SIMS can measure only ions created in the sputtering process and not neutral atoms or clusters, the detection limit of a particular element is affected by how efficiently it ionizes. The ionization efficiency of an element is referred to as its ion yield. The ion yield of a particular element A is simply the ratio of the number of A ions to the total number of A atoms sputtered from the mixing zone. For example, if element A has a 1 100 probability of being ionized in the sputtering process—that is, if 1 ion is formed from every 100 atoms of A sputtered from the sample—the ion yield of A would be 1/100. The higher the ion yield for a given element, the lower (better) the detection limit. [Pg.535]

SALI compares fiivorably with other major surface analytical techniques in terms of sensitivity and spatial resolution. Its major advantj e is the combination of analytical versatility, ease of quantification, and sensitivity. Table 1 compares the analytical characteristics of SALI to four major surfiice spectroscopic techniques.These techniques can also be categorized by the chemical information they provide. Both SALI and SIMS (static mode only) can provide molecular fingerprint information via mass spectra that give mass peaks corresponding to structural units of the molecule, while XPS provides only short-range chemical information. XPS and static SIMS are often used to complement each other since XPS chemical speciation information is semiquantitative however, SALI molecular information can potentially be quantified direedy without correlation with another surface spectroscopic technique. AES and Rutherford Backscattering (RBS) provide primarily elemental information, and therefore yield litde structural informadon. The common detection limit refers to the sensitivity for nearly all elements that these techniques enjoy. [Pg.560]

The SIMS analytical ion signal of a specific element or isotope also can be enhanced by selective ionization of particular atoms, and the detection limit for that element thereby improved. This mode of SNMS is important to specific applications, but it lacks the generality inherent in nonselective SNMS methods. The focus of this article will be on the methods for obtaining complete, accurate, and matrix-independent compositions of chemically complex thin-film structures and materials. [Pg.573]

Today dynamic SIMS is a standard technique for measurement of trace elements in semiconductors, high performance materials, coatings, and minerals. The main advantages of the method are excellent sensitivity (detection limit below 1 pmol mol ) for all elements, the isotopic sensitivity, the inherent possibility of measuring depth profiles, and the capability of fast direct imaging and 3D species distribution. [Pg.106]

The advantages of SIMS are its high sensitivity (detection limit of ppms for certain elements), its ability to detect hydrogen and the emission of molecular fragments that often bear tractable relationships with the parent structure on the surface. Disadvantages are that secondary ion formation is a poorly understood phenomenon and that quantification is often difficult. A major drawback is the matrix effect secondary ion yields of one element can vary tremendously with chemical environment. This matrix effect and the elemental sensitivity variation of five orders of magmtude across the periodic table make quantitative interpretation of SIMS spectra oftechmcal catalysts extremely difficult. [Pg.151]

LC-PB-MS is especially suited to NPLC systems. RPLC-PB-MS is limited to low-MW (<500 Da) additives. For higher masses, LC-API-MS (combined with tandem MS and the development of a specific mass library) is necessary. Coupling of LC via the particle-beam interface to QMS, QITMS and magnetic-sector instruments has been reported. In spite of the compatibility of PB-MS with conventional-size LC, microbore column (i.d. 1-2 mm) LC-PB-MS has also been developed. A well-optimised PB interface can provide a detection limit in the ng range for a full scan mode, and may be improved to pg for SIM analyses. [Pg.502]

The principal advantages of SIMS, in both its static and dynamic forms, are its surface sensitivity and its very low detection limits for impurities. Only a very small proportion of the detected ions come from the second or lower layers of the materials being analysed. With regard to quantitative analysis, Yickerman (in Yickerman,... [Pg.77]

In order to detect possible impurities or doping agents at rather low concentrations the SIMS method should be chosen. Compared to XPS the detection limit of SIMS is... [Pg.96]

As for silicon, secondary ion mass spectrometry (SIMS) is the most widely used profiling analysis technique for deuterium diffusion studies in III-V compounds. Deuterium advantageously replaces hydrogen for lowering the detection limit. The investigations of donor and acceptor neutralization effects have been usually performed through electrical measurements, low temperature photoluminescence, photothermal ionization spectroscopy (PTIS) and infrared absorption spectroscopy. These spectroscopic investigations will be treated in a separated part of this chapter. [Pg.465]

H2SO4 = sulfuric acid IDL = insturmental detection limit MS = mass spectrometry MSD = mas selective detctor Na2S04 = sodium sulfate PCBs = poylchiorinated biphenlys PUR = polyurethane foam SIM = selective ion monitoring SPE = solid phase extraction... [Pg.216]

Cheney et al. (1995) analyzed steroids by coupling an HPLC purification step with GC/MS. The steroids were initially characterized by their HPLC retention times compared with the retention times of tritium-labeled recovery standards. Next, the nemosteroids were characterized by their GC retention times. Finally, they were identified by their unique fragmentation spectra following derivatization with heptafluorobutyric anhydride or methoxyamine hydrochloride. For structmal identification, the mass spectra were compared to appropriate reference standards. This approach is highly specific, and its sensitivity is increased by the use of SIM. The detection limit for measuring allopregnanolone achieved in the 1995 study was 0.63 pmol (0.2 ng) starting from 100-300 mg of brain tissue. [Pg.186]

Concentrations of neuroactive steroids that are present in brain and plasma are normally very low. Therefore, several prepurification steps are generally required before analyzing these samples. It is necessary to improve detection limits and to introduce new methods of analyzing these samples directly from solution, without these labor-intensive and time-consuming prepurification procedures. Now, most neurosteroid analyses are performed by RIA or by GC/MS. The most sensitive GC/MS reported so far is GC/EC-NCI/MS, wherein MS in performed in the SIM mode. Neurosteroid sulfates can be directly analyzed by MS, without derivatization, by using soft ionization methods such as FAB and ESI. These methods are currently undergoing further refinement and development. [Pg.189]


See other pages where SIMS detection limits is mentioned: [Pg.356]    [Pg.46]    [Pg.235]    [Pg.529]    [Pg.529]    [Pg.532]    [Pg.533]    [Pg.543]    [Pg.550]    [Pg.572]    [Pg.604]    [Pg.622]    [Pg.625]    [Pg.671]    [Pg.74]    [Pg.116]    [Pg.325]    [Pg.459]    [Pg.469]    [Pg.480]    [Pg.23]    [Pg.279]    [Pg.112]    [Pg.33]    [Pg.92]    [Pg.214]    [Pg.58]    [Pg.226]    [Pg.205]    [Pg.489]    [Pg.188]    [Pg.189]   
See also in sourсe #XX -- [ Pg.163 , Pg.164 ]




SEARCH



Detectable limit

Detection limits

Detection limits, limitations

Detection-limiting

Dopant SIMS detection limits

SIM

SIMS

SIMS detection limits Table

© 2024 chempedia.info