Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density microscopic

The Sclair resins under study here were of similar melt index and were manufactured under similar conditions. They are a uniform series of polyethylenes differing only in density. Microscopic observation under polarized light confirmed the hypothesis that the higher crystallinity in... [Pg.255]

Neutron wavelength Macroscopic number density Microscopic particle density operator Nucleus cross-section Nucleus coherent cross-section Nucleus incoherent cross-section... [Pg.209]

Both single-fiber and multiple-fiber methods are available for determining hair fiber cross-sectional dimensions or changes. Single-fiber methods include linear density, microscope (light or electron), vibrascope, micrometer caliper, and laser beam diffraction. For multiple-fiber determinations, a centrifuge may be used. [Pg.421]

Field analogues should be based on reservoir rock type (e.g. tight sandstone, fractured carbonate), fluid type, and environment of deposition. This technique should not be overlooked, especially where little information is available, such as at the exploration stage. Summary charts such as the one shown in Figure 8.19 may be used in conjunction with estimates of macroscopic sweep efficiency (which will depend upon well density and positioning, reservoir homogeneity, offtake rate and fluid type) and microscopic displacement efficiency (which may be estimated if core measurements of residual oil saturation are available). [Pg.207]

One more significant aspect of modem microscopy is the quantitative interpretation of the images in terms of the microstmcture of the object. Although most microscopes include or can be combined with powerful image processing systems, the interpretation of the contrast is still the main problem. On the other hand, reliable micromorpbological information could be easily obtained from a set of thin flat cross sections which reveal only density information, from which case accurate two- and three-dimensional numerical parameters of the internal microstmcture could be calculated. [Pg.579]

Considering existing microscopical techniques, one can find that non-destmctive information from the internal stmcture of an object in natural conditions can be obtained by transmission X-ray microscopy. Combination of X-ray transmission technique with tomographical reconstmction allows getting three-dimensional information about the internal microstmcture [1-3]. In this case any internal area can be reconstmcted as a set of flat cross sections which can be used to analyze the two- and three-dimensional morphological parameters [4]. For X-ray methods the contrast in the images is a mixed combination of density and compositional information. In some cases the compositional information can be separated from the density information [5]. Recently there has been a... [Pg.579]

The complete thennodynainics of a system can now be obtained as follows. Let die isolated system withAi particles, which occupies a volume V and has an energy E within a small uncertainty E, be modelled by a microscopic Flamiltonian Ti. First, find the density of states p( ) from the Flamiltonian. Next, obtain the entropy as S(E, V, N) = log V E) or, alternatively, by either of the other two equivalent expressions... [Pg.393]

The non-consen>ed variable (.t,0 is a broken symmetry variable, it is the instantaneous position of the Gibbs surface, and it is the translational synnnetry in z direction that is broken by the inlioinogeneity due to the liquid-vapour interface. In a more microscopic statistical mechanical approach 121, it is related to the number density fluctuation 3p(x,z,t) as... [Pg.727]

Gas-phase reactions play a fundamental role in nature, for example atmospheric chemistry [1, 2, 3, 4 and 5] and interstellar chemistry [6], as well as in many teclmical processes, for example combustion and exliaust fiime cleansing [7, 8 and 9], Apart from such practical aspects the study of gas-phase reactions has provided the basis for our understanding of chemical reaction mechanisms on a microscopic level. The typically small particle densities in the gas phase mean that reactions occur in well defined elementary steps, usually not involving more than three particles. [Pg.759]

Consider an isotropic medium that consists of independent and identical microscopic cln-omophores (molecules) at number density N. At. sth order, each element of the macroscopic susceptibility tensor, given in laboratory Cartesian coordinates A, B, C, D, must carry s + 1 (laboratory) Cartesian indices (X, Y or Z) and... [Pg.1189]

Figure 2-125. Different isovalue-based surfaces of phenylalanine a) isoelectronic density b) molecular orbitals (HOMO-LUMO) c) isopotential surface and d) isosurface of the electron cryo-microscopic volume of the ribosome of Escherichia coii. Figure 2-125. Different isovalue-based surfaces of phenylalanine a) isoelectronic density b) molecular orbitals (HOMO-LUMO) c) isopotential surface and d) isosurface of the electron cryo-microscopic volume of the ribosome of Escherichia coii.
Testing. Chemical analyses are done on all manufactured abrasives, as well as physical tests such as sieve analyses, specific gravity, impact strength, and loose poured density (a rough measure of particle shape). Special abrasives such as sintered sol—gel aluminas require more sophisticated tests such as electron microscope measurement of a-alumina crystal si2e, and indentation microhardness. [Pg.13]

Some nonhygroscopic materials such as metals, glass, and plastics, have the abiUty to capture water molecules within microscopic surface crevices, thus forming an invisible, noncontinuous surface film. The density of the film increases as the relative humidity increases. Thus, relative humidity must be held below the critical point at which metals may etch or at which the electrical resistance of insulating materials is significantly decreased. [Pg.357]

Visual and Manual Tests. Synthetic fibers are generally mixed with other fibers to achieve a balance of properties. Acryhc staple may be blended with wool, cotton, polyester, rayon, and other synthetic fibers. Therefore, as a preliminary step, the yam or fabric must be separated into its constituent fibers. This immediately estabUshes whether the fiber is a continuous filament or staple product. Staple length, brightness, and breaking strength wet and dry are all usehil tests that can be done in a cursory examination. A more critical identification can be made by a set of simple manual procedures based on burning, staining, solubiUty, density deterrnination, and microscopical examination. [Pg.276]

Barium fluoride [7782-32-8] Bap2, is a white crystal or powder. Under the microscope crystals may be clear and colorless. Reported melting points vary from 1290 (1) to 1355°C (2), including values of 1301 (3) and 1353°C (4). Differences may result from impurities, reaction with containers, or inaccurate temperature measurements. The heat of fusion is 28 kj/mol (6.8 kcal/mol) (5), the boiling point 2260°C (6), and the density 4.9 g/cm. The solubiUty in water is about 1.6 g/L at 25°C and 5.6 g/100 g (7) in anhydrous hydrogen fluoride. Several preparations for barium fluoride have been reported (8—10). [Pg.155]

Syntactic Cellular Polymers. Syntactic cellular polymer is produced by dispersing rigid, foamed, microscopic particles in a fluid polymer and then stabilizing the system. The particles are generally spheres or microhalloons of phenoHc resin, urea—formaldehyde resin, glass, or siUca, ranging 30—120 lm dia. Commercial microhalloons have densities of approximately 144 kg/m (9 lbs/fT). The fluid polymers used are the usual coating resins, eg, epoxy resin, polyesters, and urea—formaldehyde resin. [Pg.408]

Microscopy (qv) plays a key role in examining trace evidence owing to the small size of the evidence and a desire to use nondestmctive testing (qv) techniques whenever possible. Polarizing light microscopy (43,44) is a method of choice for crystalline materials. Microscopy and microchemical analysis techniques (45,46) work well on small samples, are relatively nondestmctive, and are fast. Evidence such as sod, minerals, synthetic fibers, explosive debris, foodstuff, cosmetics (qv), and the like, lend themselves to this technique as do comparison microscopy, refractive index, and density comparisons with known specimens. Other microscopic procedures involving infrared, visible, and ultraviolet spectroscopy (qv) also are used to examine many types of trace evidence. [Pg.487]

DRI can be produced in pellet, lump, or briquette form. When produced in pellets or lumps, DRI retains the shape and form of the iron oxide material fed to the DR process. The removal of oxygen from the iron oxide during direct reduction leaves voids, giving the DRI a spongy appearance when viewed through a microscope. Thus, DRI in these forms tends to have lower apparent density, greater porosity, and more specific surface area than iron ore. In the hot briquetted form it is known as hot briquetted iron (HBI). Typical physical properties of DRI forms are shown in Table 1. [Pg.424]

In electrode kinetics a relationship is sought between the current density and the composition of the electrolyte, surface overpotential, and the electrode material. This microscopic description of the double layer indicates how stmcture and chemistry affect the rate of charge-transfer reactions. Generally in electrode kinetics the double layer is regarded as part of the interface, and a macroscopic relationship is sought. For the general reaction... [Pg.64]

Champion and Rohde [42] investigate the effects of shock-wave amplitude and duration on the Rockwell C hardness [41] and microstructure of Hadfield steel over the pressure range of 0.4-48 GPa (pulse duration of 0.065 s, 0.230 ls, and 2.2 ps). The results are shown in Fig. 7.8. In addition to the very pronounced effeet of pulse duration on hardness shown in Fig. 7.8, postshoek electron microscope observations indicate that it is the final dislocation density and not the specific microstructure that is important in determining the hardness. [Pg.235]


See other pages where Density microscopic is mentioned: [Pg.331]    [Pg.861]    [Pg.165]    [Pg.861]    [Pg.281]    [Pg.331]    [Pg.861]    [Pg.165]    [Pg.861]    [Pg.281]    [Pg.57]    [Pg.593]    [Pg.664]    [Pg.754]    [Pg.1189]    [Pg.1324]    [Pg.1529]    [Pg.1957]    [Pg.2005]    [Pg.2365]    [Pg.2366]    [Pg.2380]    [Pg.182]    [Pg.512]    [Pg.417]    [Pg.466]    [Pg.436]    [Pg.109]    [Pg.160]    [Pg.454]    [Pg.574]    [Pg.6]    [Pg.337]    [Pg.195]    [Pg.311]    [Pg.438]   
See also in sourсe #XX -- [ Pg.205 , Pg.210 , Pg.220 ]




SEARCH



Microscopic particle densities

Time-dependent microscopic density

© 2024 chempedia.info