Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decarboxylation tetraacetate

One-electron oxidation of carboxylate ions generates acyloxy radicals, which undergo decarboxylation. Such electron-transfer reactions can be effected by strong one-electron oxidants, such as Mn(HI), Ag(II), Ce(IV), and Pb(IV) These metal ions are also capable of oxidizing the radical intermediate, so the products are those expected from carbocations. The oxidative decarboxylation by Pb(IV) in the presence of halide salts leads to alkyl halides. For example, oxidation of pentanoic acid with lead tetraacetate in the presence of lithium chloride gives 1-chlorobutane in 71% yield ... [Pg.726]

A complementary method is the Kochi reaction. This reaction is especially useful for the generation of secondary and tertiary alkyl chlorides through decarboxylation of carboxylic acids, where the classical method may not work. As reagents, lead tetraacetate and lithium chloride are then employed ... [Pg.169]

Another decarboxylation reaction that employs lead tetraacetate under milder conditions, has been introduced by Grob et alJ In that case A-chlorosuccinimide is used as chlorinating agent and a mixture of A,A-dimethylformamide and acetic acid as solvent. [Pg.169]

The Cg-amine, originally obtained by the methanolysis of kasugamycin, on treatment with lead tetraacetate or sodium periodate afforded a nitrile amine, with evolution of carbon dioxide, showing a maximum at 2200 cm.-1. This reaction is explained only by the structure (13). The -N-C=N group of the product can be formed by oxidative decarboxylation and can be easily rationalized by the present understanding of such reagents (2, 13) as shown below. On the other hand, the treatment... [Pg.36]

A cursory inspection of key intermediate 8 (see Scheme 1) reveals that it possesses both vicinal and remote stereochemical relationships. To cope with the stereochemical challenge posed by this intermediate and to enhance overall efficiency, a convergent approach featuring the union of optically active intermediates 18 and 19 was adopted. Scheme 5a illustrates the synthesis of intermediate 18. Thus, oxidative cleavage of the trisubstituted olefin of (/ )-citronellic acid benzyl ester (28) with ozone, followed by oxidative workup with Jones reagent, affords a carboxylic acid which can be oxidatively decarboxylated to 29 with lead tetraacetate and copper(n) acetate. Saponification of the benzyl ester in 29 with potassium hydroxide provides an unsaturated carboxylic acid which undergoes smooth conversion to trans iodolactone 30 on treatment with iodine in acetonitrile at -15 °C (89% yield from 29).24 The diastereoselectivity of the thermodynamically controlled iodolacto-nization reaction is approximately 20 1 in favor of the more stable trans iodolactone 30. [Pg.239]

A hydroxymethyl group can be introduced (ArH —> ArCH20H) by several variations of this method. Alkylation of these substrates can also be accomplished by generating the alkyl radicals in other ways from hydroperoxides and FeS04, from alkyl iodides and H2O2—Fe V from carboxylic acids and lead tetraacetate, or from the photochemically induced decarboxylation of carboxylic acids by iodoso-benzene diacetate. [Pg.933]

Carboxylic acids are oxidized by lead tetraacetate. Decarboxylation occurs and the product may be an alkene, alkane or acetate ester, or under modified conditions a halide. A free radical mechanism operates and the product composition depends on the fate of the radical intermediate.267 The reaction is catalyzed by cupric salts, which function by oxidizing the intermediate radical to a carbocation (Step 3b in the mechanism). Cu(II) is more reactive than Pb(OAc)4 in this step. [Pg.1145]

Dicarboxylic acids undergo to-decarboxylation on reaction with lead tetraacetate to give alkenes. This reaction has been of occasional use for the synthesis of strained alkenes. [Pg.1147]

The decarboxylation of carboxylate anions is carried out chemically by a variety of one-electron oxidants such as lead tetraacetate, uranyl nitrate, peroxides, quinones, pyridinium cations, etc.199 Importantly, the carboxylate anion (as... [Pg.259]

Many of the early reports of spin-trapping experiments were focused on mechanistic investigations, and some of these feature in the early reviews (see p. 4). Unfortunately, it is in this application that inferences drawn may be most suspect. For example, the inability of the method to differentiate between radical trapping on the one hand, and a combination of nucleophile trapping with one-electron oxidation on the other, is a serious shortcoming. An early example of this was the tentative conclusion that acetoxyl radicals were spin-trapped by PBN competitively with their decarboxylation in reactions of lead tetraacetate. In view of the rapidity of the decarboxylation reaction, trapping of acetate ion and subsequent oxidation seems a likely alternative. [Pg.42]

Reaction of 1,2 -dicarboxylic acids has been used for the formation of a number of strained alkenes and also applied to the Diels-Alder addition products from maleic anhydride (Table 9.5). Both cis- and tr s-diacids take part in the process. Aqueous pyridine containing, triethylamine as a strong base, is considered the best solvent and higher yields are obtained at temperatures of around 80 "C [130]. Use of a divided cell avoids a possibility of electrocatalytic hydrogenation of the product at the cathode. The addition of /a/-butylhydroquinone as a radical scavenger prevents polymerization of the product [127], An alternative chemical decarboxylation process is available which uses lead tetraacetate [131] but problems can arise because of reaction between the alkene and lead tetraacetate. [Pg.325]

Periodic acid reacts well in aqueous solution. Usually, if the reactant has to be run in organic solvents, lead tetraacetate is used as the reagent. Interestingly, periodic acid will not act on a-keto acids or a-hydroxy acids whereas lead tetraacetate wiU. The corresponding reactions are actually oxidative decarboxylations. [Pg.438]

Succinic acids undergo bisdecarboxylation on exposure to lead tetraacetate [264], Contra-polarization at one of the a-carbons through fragmentation of the lead(IV) carboxylate moiety enables a smooth decarboxylation of the remaining functionality. [Pg.148]

R. A. Sheldon and J. K. Kochi, Oxidative Decarboxylation of Acids by Lead Tetraacetate, Organic Reactions 19, 279 (1972). [Pg.853]

Anodic dehydrogenations, e.g., oxidations of alcohols to ketones, have been treated in Sect. 8.1 and formation of olefins by anodic elimination of C02 and H+ from carboxylic acids was covered in Sect. 9.1. Therefore this section is only concerned with anodic bisdecarboxylations of v/odicarboxylic acids to olefins. This method gives usually good results when its chemical equivalent, the lead tetraacetate decarboxylation, fails. Combination of bisdecarboxylation with the Diels-Alder reaction or [2.2] -photosensitized cycloadditions provides useful synthetic sequences, since in this way the equivalent of acetylene can be introduced in cycloadditions. [Pg.93]

The rest of the synthesis (Scheme 13) is completely stereospecific and most of the steps are known (20). The bicyclic acid was oxidatively decarboxylated with lead tetraacetate and copper acetate (21). The resulting enone was alkylated with methyllithium giving a single crystalline allylic tertiary alcohol. This compound was cleaved with osmium tetroxide and sodium periodate. Inverse addition of the Wittig reagent effected methylenation in 85% yield. Finally, the acid was reduced with lithium aluminum hydride to grandisol. [Pg.102]

OXIDATIVE DECARBOXYLATION Lead tetraacetate. Sodium hypochoorite. [Pg.270]

Oxidative decarboxylation. Oxidation of [n.2.2]propellanecarboxylic acids (1) with lead tetraacetate in pyridine at 80 gives bicyclic acetates 2 and/or tricyclic acetates 3. The latter products are converted into 2 on vapor-phase thermolysis."... [Pg.441]


See other pages where Decarboxylation tetraacetate is mentioned: [Pg.429]    [Pg.423]    [Pg.75]    [Pg.1529]    [Pg.196]    [Pg.109]    [Pg.110]    [Pg.129]    [Pg.17]    [Pg.1185]    [Pg.459]    [Pg.302]    [Pg.43]    [Pg.367]    [Pg.13]    [Pg.237]    [Pg.52]    [Pg.217]    [Pg.42]    [Pg.99]    [Pg.315]    [Pg.80]    [Pg.429]   
See also in sourсe #XX -- [ Pg.184 , Pg.190 , Pg.205 ]




SEARCH



Decarboxylation lead tetraacetate

Lead tetraacetate decarboxylative halogenation

Lead tetraacetate oxidative decarboxylation

Lead tetraacetate oxidative decarboxylation of carboxylic acids

Lead tetraacetate reductive decarboxylation

Tetraacetate

© 2024 chempedia.info