Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Damage liquidated

This is the device where the air or water being cooled gives up its heat to provide the latent heat of evaporation to the refrigerant. Superheat is also added to the refrigerant at this point to prevent damaging liquid forming on the way to the compressor. [Pg.439]

Breathing vapor may cause drowsiness. Prolonged inhalation of small quantities may cause liver and kidney damage. Liquid irritates the skin and eyes. Swallowing would cause poisoning. Avoid breathing vapor. Avoid contact with skin and eyes.6 TLV-TWA 5 ppm (20 mg/m3).7... [Pg.653]

Fig. 4. (a) Damaged liquid oxygen and nitrogen tanks (Habas plant, Itzmit, 1999), (b) Cylindrical shape Furnaces (c) Spherical storage vessels. [Pg.228]

If an extremely liquid repellent surface is mechanically durable, it should ideally maintain CAH, ROA and SHA values lower than 5° or 10° for repeated mechanical degradation tests of the surface. The reason for this focus on dynamic parameters is that damaged liquid repellent surfaces sometimes maintain a high APCA but the droplets tend to stay pinned on the substrates, a phenomenon described in the literature by various researchers as petal effect [35]. Furthermore, surfaces such as the SLIPS concept are designed to have low SA values, with little attention paid to the magnitude of the APCA. For these reasons, it is of significant importance to focus on the dynamic repellency characteristics, such as CAH, ROA and SHA. [Pg.217]

Cavitation damage is a fonn of deterioration associated with materials in rapidly moving liquid environments, due to collapse of cavities (or vapour bubbles) in the liquid at a solid-liquid interface, in the high-pressure regions of high flow. If the liquid in movement is corrosive towards the metal, the damage of the metal may be greatly increased (cavitation corrosion). [Pg.2732]

A powerful stirrer, driven by a flexible driving shaft between the motor (I h.p.) and the stirrer, is depicted in Fig. II, 7, 3. The motor may be placed at a distance from the stirrer head and reaction vessel, thus enabling the assembly to be used for inflammable, corrosive or fuming liquids without damage to the motor. Furthermore, any laboratory retort stand and clamp may be used since the stirrer head weighs only about 250 grams. A variable speed control (500-2000 r.p.m.) is provided. [Pg.63]

Hydraziae is toxic and readily absorbed by oral, dermal, or inhalation routes of exposure. Contact with hydraziae irritates the skin, eyes, and respiratory tract. Liquid splashed iato the eyes may cause permanent damage to the cornea. At high doses it can cause convulsions, but even low doses may result ia ceatral aervous system depressioa. Death from acute exposure results from coavulsioas, respiratory arrest, and cardiovascular coUapse. Repeated exposure may affect the lungs, Hver, and kidneys. Of the hydraziae derivatives studied, 1,1-dimethylhydrazine (UDMH) appears to be the least hepatotoxic monomethyl-hydrazine (MMH) seems to be more toxic to the kidneys. Evidence is limited as to the effect of hydraziae oa reproductioa and/or development however, animal studies demonstrate that only doses that produce toxicity ia pregaant rats result ia embryotoxicity (164). [Pg.288]

Cavitation Loosely regarded as related to water hammer and hydrauhc transients because it may cause similar vibration and equipment damage, cavitation is the phenomenon of collapse of vapor bubbles in flowing liquid. These bubbles may be formed anywhere the local liquid pressure drops below the vapor pressure, or they may be injected into the hquid, as when steam is sparged into water. Local low-pressure zones may be produced by local velocity increases (in accordance with the Bernouhi equation see the preceding Conservation Equations subsection) as in eddies or vortices, or near bound-aiy contours by rapid vibration of a boundaiy by separation of liquid during water hammer or by an overaU reduction in static pressure, as due to pressure drop in the suction line of a pump. [Pg.670]

Suction Limitations of a Pump Whenever the pressure in a liquid drops below the vapor pressure corresponding to its temperature, the liquid will vaporize. When this happens within an operating pump, the vapor bubbles will be carried along to a point of higher pressure, where they suddenly collapse. This phenomenon is known as cavitation. Cavitation in a pump should be avoided, as it is accompanied by metal removal, vibration, reduced flow, loss in efficiency, and noise. When the absolute suction pressure is low, cavitation may occur in the pump inlet and damage result in the pump suction and on the impeller vanes near the inlet edges. To avoid this phenomenon, it is necessary to maintain a required net positive suction head (NPSH)r, which is the equivalent total head of liquid at the pump centerline less the vapor pressure p. Each pump manufacturer publishes curves relating (NPSH)r to capacity and speed for each pump. [Pg.901]

Corrosion is probably the greatest threat to vessel life. Partially filled vessels frequently have severe pitting at the liquid-vapor interface. Vessels usually do not have a corrosion allowance on the outside. Lack of protec tion against the weather or against the drip of corrosive chemicals can reduce vessel life. Insulation may contain damaging substances. Chlorides in insulating materials can cause cracking of stainless steels. [Pg.1029]

Practical separation techniques for hquid particles in gases are discussed. Since gas-borne particulates include both hquid and sohd particles, many devices used for dry-dust collection (discussed in Sec. 17 under Gas-Sohds Separation ) can be adapted to liquid-particle separation. Also, the basic subject of particle mechanics is covered in Sec. 6. Separation of liquid particulates is frequently desirable in chemical processes such as in countercurrent-stage contacting because hquid entrainment with the gas partially reduces true countercurrency. Separation before entering another process step may be needed to prevent corrosion, to prevent yield loss, or to prevent equipment damage or malfunc tion. Separation before the atmospheric release of gases may be necessaiy to prevent environmental problems and for regula-toiy compliance. [Pg.1427]

Liquid-Metal Corrosion Liquid metals can also cause corrosion failures. The most damaging are liqmd metals which penetrate the metal along grain boundaries to cause catastrophic failure. Examples include mercury attack on aluminum alloys and attack of stainless steels by molten zinc or aluminum. A fairly common problem occurs when galvanized-structural-steel attachments are welded to stainless piping or eqmpment. In such cases it is mandatoty to remove the galvanizing completely from the area which will be heated above 260°C (500°F). [Pg.2419]

Cavitation Formation of transient voids or vacuum bubbles in a liquid stream passing over a surface is called cavitation. This is often encountered arouna propellers, rudders, and struts and in pumps. When these bubbles collapse on a metal surface, there is a severe impact or explosive effec t that can cause considerable mechanical damage, and corrosion can be greatly accelerated because of the destruction of protective films. Redesign or a more resistant metal is generally required to avoid this problem. [Pg.2419]

Cavitation may be defined as the instantaneous formation and collapse of vapor bubbles in a liquid subject to rapid, intense localized pressure changes. Cavitation damage refers to the deterioration of a material resulting from its exposure to a cavitating fluid. [Pg.271]

When the steam was shut off and, 15 minutes later, the agitator was switched off, heat transferred from the hot wall above the liquid level to the top part of the liquid, which became hot enough for a runaway reaction to start. This resulted in a release of TCDD (dioxin), which killed a number of nearby animals, caused dermatitis (chloracne) in about 250 people, damaged vegetation near the site, and required the evacuation of about 600 people (Kletz 1994). [Pg.44]


See other pages where Damage liquidated is mentioned: [Pg.65]    [Pg.249]    [Pg.225]    [Pg.112]    [Pg.249]    [Pg.10]    [Pg.87]    [Pg.462]    [Pg.147]    [Pg.603]    [Pg.307]    [Pg.65]    [Pg.249]    [Pg.225]    [Pg.112]    [Pg.249]    [Pg.10]    [Pg.87]    [Pg.462]    [Pg.147]    [Pg.603]    [Pg.307]    [Pg.199]    [Pg.1473]    [Pg.1648]    [Pg.1696]    [Pg.1711]    [Pg.1839]    [Pg.3030]    [Pg.264]    [Pg.12]    [Pg.480]    [Pg.8]    [Pg.297]    [Pg.141]    [Pg.313]    [Pg.300]    [Pg.790]    [Pg.1019]    [Pg.1418]    [Pg.2141]    [Pg.2149]    [Pg.2282]    [Pg.2319]    [Pg.2405]    [Pg.2424]    [Pg.2435]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Damages liquidated claim

© 2024 chempedia.info