Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopropanation diazoacetate esters

Carbenes and substituted carbenes add to double bonds to give cyclopropane derivatives ([1 -f 2]-cycloaddition). Many derivatives of carbene (e.g., PhCH, ROCH) ° and Me2C=C, and C(CN)2, have been added to double bonds, but the reaction is most often performed with CH2 itself, with halo and dihalocarbenes, " and with carbalkoxycarbenes (generated from diazoacetic esters). Alkylcarbenes (HCR) have been added to alkenes, but more often these rearrange to give alkenes (p. 252). The carbene can be generated in any of the ways normally used (p. 249). However, most reactions in which a cyclopropane is formed by treatment of an alkene with a carbene precursor do not actually involve free carbene... [Pg.1084]

Allyloxysilyl)diazoacetic esters 6 and the homologous butenyloxy derivative 9 undergo intramolecular cyclopropanation to form 7 and 10, respectively, when decomposed photochemically or by transition metal catalysis. The thermal reaction of 9 produces the same result, whereas the l-oxa-2-sila-3-cyclopentene 8 is formed from 6, presumably via a pyrazoline intermediate. [Pg.57]

Table 5. Yields of cyclopropanation of various olefins by diazoacetic esters in the presence of Rh2(OAc)4, Pd(OAc)2 or Cu(OTf)/ b... Table 5. Yields of cyclopropanation of various olefins by diazoacetic esters in the presence of Rh2(OAc)4, Pd(OAc)2 or Cu(OTf)/ b...
Participation of 69 in the reaction scheme would also explain why cyclopropanes are obtained from diazoacetic esters, but dihydrofurans from diazoketones 121 In the latter case, the enolate oxygen in 69 is more nucleophilic, thus favoring 1,5-over 1,3-ring closure. [Pg.119]

Use of a chiral diazo ester proved less rewarding in terms of enantioselective cyclopropanation. Only very low enantiomeric excesses were obtained when styrene was cyclopropanated with the carbenoid derived from diazoacetic esters 219 bearing a chiral ester residue 214). [Pg.171]

Copper-catalyzed cyclopropanation of benzene and its derivatives by a diazoacetic ester yields a norcaradiene 230 which undergoes spontaneous ring opening to cyclo-heptariene 231. At the temperatures needed for successful cyclopropanation, sigma-tropic H-shifts leading to conjugated isomers of cycloheptatriene carboxylates cannot be avoided. The situation is complicated by the formation of regioisomers upon cyclopropanation of substituted benzenes, and separation of the cycloheptatriene isomers may became tedious if not impossible. [Pg.176]

Aratani et al. (21) subsequently found that the use of chiral menthyl diazoacetate esters led to higher trans/cis ratios and improved facial selectivity. A number of bulky diazoesters provided high enantioselectivity in the cyclopropanation reaction, but trans selectivity was highest with /-menthyl esters, Eq. 6. It seems clear from these and subsequent studies that the menthyl group is used because of its bulk and ready availability. The chirality present in the ester has a negligible effect on facial selectivity in the cyclopropanation reaction. Slow addition of diazoester is required (7 h at ambient temperature) for high yields presumably to suppress the formation of fumarate byproducts. [Pg.9]

The inter- or intramolecular cyclopropanation of achiral alkenes with enantiome-rically pure diazoacetic esters [1016,1363,1364] or amides [1365,1366] does not usually proceed with high diastereoselectivity. A chiral auxiliary which occasionally gives good results is pantolactone (3-hydroxy-4,4-dimethyltetrahydro-2-furanone) [1016,1367,1368]. [Pg.219]

Carbon-Carbon Bond-Forming Reactions TABLE 9.4. CYCLOPROPANATION OF DIAZOACETATE ESTERS... [Pg.543]

It was mentioned earlier that catalytic hydrogenation of protoporphyrin-IX (19) produces mesoporphyrin-IX (46), and that this type of vinyl modification has been used in structural degradation methods. The vinyl group can also be modified for degradative purposes by addition of diazoacetic ester, which produces the corresponding cyclopropane derivatives... [Pg.402]

The methods of preparation of i. ost cyclojro-par.e acids involve first the preparation of tAie cyclic ester and subsequent hydrolysis to the free acid. That such hydrolysis did not change tne cyclic structure has been seen to be true ir. all tne cases tnus iar examined i o exceptions to tnis rule will now be studied,ior tney are botn 1,1,2,3 compounds. Aconitic ester and diazoacetic ester give by the usual reactions a cyclopropane ester as follows ... [Pg.31]

Dirhodium(II) tetrakis(carboxamides), constructed with chiral 2-pyrroli-done-5-carboxylate esters so that the two nitrogen donor atoms on each rhodium are in a cis arrangement, represent a new class of chiral catalysts with broad applicability to enantioselective metal carbene transformations. Enantiomeric excesses greater than 90% have been achieved in intramolecular cyclopropanation reactions of allyl diazoacetates. In intermolecular cyclopropanation reactions with monosubsti-tuted olefins, the cis-disubstituted cyclopropane is formed with a higher enantiomeric excess than the trans isomer, and for cyclopropenation of 1-alkynes extraordinary selectivity has been achieved. Carbon-hydro-gen insertion reactions of diazoacetate esters that result in substituted y-butyrolactones occur in high yield and with enantiomeric excess as high as 90% with the use of these catalysts. Their design affords stabilization of the intermediate metal carbene and orientation of the carbene substituents for selectivity enhancement. [Pg.45]

The most frequently used metallic catalysts for acyldiazo- and (alkoxycarbonyl)dia-zomethanes are complexes or salts of rhodium, palladium and copper. Alkenylboronic esters A-silylated allylamines and acetylenes are successfully cyclopropanat-ed with diazocarbonyl compounds under catalysis of one of those metal derivatives. Newly developed metallic catalysts for diazoacetic esters include polymer-bound, quantitatively recoverable Rh(II) carboxylate salts ", Cu(II) supported on NATION ion exchange poly-mer ruthenacarborane clusters, Rh2(NHCOCH3)4 which produces cyclopropanes with substantially enhanced trans (anti) selectivity as shown below and (rj -CsHs)... [Pg.290]

CO)2Fe (THF) BFT A transition state model for the syn stereoselective cyclo-propanations of alkenes with diazoacetic ester by Rh-porphyrin catalysts has been proposed. Alkenes , conjugated dienes and enol ethers are stereoselectively cyclopropanated with Rh(II) -stabilized 1- (alkoxycarbonyl)vinyl carbenoids derived from the diazo precursors and Rh2(OAc)4 (equation 95). The Cu(acac)2-catalyzed reactions of Me3SiCH2COCHN2 with alkenes provide the expected adducts in good yields ". ... [Pg.290]

In contrast to the carbene and carbenoid chemistry of simple diazoacetic esters, that of a-silyl-a-diazoacetic esters has not yet been developed systematically [1]. Irradiation of ethyl diazo(trimethylsilyl)acetate in an alcohol affords products derived from 0-H insertion of the carbene intermediate, Wolff rearrangement, and carbene- silene rearrangement [2]. In contrast, photolysis of ethyl diazo(pentamethyldisilanyl)acetate in an inert solvent yields exclusively a ketene derived from a carbene->silene->ketene rearrangement [3], Photochemically generated ethoxycarbonyltrimethyl-silylcarbene cyclopropanates alkenes and undergoes insertion into aliphatic C-H bonds [4]. Copper-catalyzed and photochemically induced cyclopropenation of an alkyne with methyl diazo(trimethylsilyl)acetate has also been reported [5]. [Pg.149]

Cyclopropanation. Platinum(lV) chloride is able to induce the formation of cyclopropanecarboxylic esters from alkenes and diazoacetic esters at 80° (10 examples, 70-95%). [Pg.310]

Photolysis of a-diazo esters in the presence of benzene or benzene derivatives often results in [2-1-1] cycloaddition of the intermediate acylcarbene to the aromatic ring, thus providing access to the norcaradiene (bicyclo[4.1.0]hepta-2,5-diene)/cyclohepta-l,3,5-triene valence equilibrium. The diverse effects that influence this equilibrium have been discussed (see Houben-Weyl, Vol. 4/3, p509). To summarize, the 7-monosubstituted systems obtained from a-diazoacetic esters exist completely in the cycloheptatriene form, whereas a number of 7,7-disubstituted compounds maintain a rapid valence equilibrium in solution. On the other hand, several stable 7-cyanonor-caradienes are known which have a second 7t-acceptor substituent at C7 (see Section 1.2.1.2.4.3). Subsequent photochemical isomerization reactions of the cycloheptatriene form may destroy the norcaradiene/cycloheptatriene valence equilibrium. Cyclopropanation of the aromatic ring often must compete with other reactions of the acylcarbene, such as insertion into an aromatic C H bond or in the benzylic C H bond of alkylbenzenes (Table 7). [Pg.442]

Copper powder, copper bronze, copper(I) oxide, copper(II) oxide, copper(Il) sulfate, and cop-per(I) halides, typically applied as a suspension in refluxing solvent or alkene, are used extensively for intermolecular cyclopropanation with diazoacetic esters or diazomalonic esters, and for intramolecular cyclopropanation of unsaturated diazocarbonyl compounds. Bis(acetylacetonato)copper(Il) [Cu(acac)2], a more recently introduced catalyst, is only sparingly soluble in the typical solvents and alkenes which are used and is therefore applied under the same conditions. Catalysts such as trialkyl phosphite and triaryl phosphite complexes of copper(I) halides and salicylaldimatocopper(II) chelates [e.g. 1 (R = (R)-a-phenylethyl, R = /ert-butyl ) and 2 ] are soluble in many organic solvents and liquid alkenes. [Pg.445]

Under the conditions of homogeneous catalysis, decomposition temperatures are normally significantly lower than with the heterogeneous catalysts mentioned above, and cyclopropane yields in general are higher. However, catalysts of type 2 must first be converted into the active form [presumably a copper(I) monochelate] by brief heating or by in situ reduction (see Table 10). Another soluble catalyst, copper(I) triflate, even decomposes diazoacetic esters and diazomalonic esters at temperatures below 0 °C and sterically more encumbered diazocarbonyl compounds (e.g. a-diazo-a-trialkylsilyl acetic esters " ) still at room temperature, and has shown its effectiveness in a number of cyclopropanation reactions. Since copper(I) triflate is... [Pg.445]

Also suited to the cyclopropanation of alkenes with diazoacetic esters are iodorhodium(III) mcAO-tetraarylporphyrins 5a and alkylrhodium(III) mew-tetraarylporphyrins 5 b. ... [Pg.447]

The catalytic activity of low-valent ruthenium species in carbene-transfer reactions is only beginning to emerge. The ruthenium(O) cluster RujCCO), catalyzed formation of ethyl 2-butyloxycyclopropane-l-carboxylate from ethyl diazoacetate and butyl vinyl ether (65 °C, excess of alkene, 0.5 mol% of catalyst yield 65%), but seems not to have been further utilized. The ruthenacarborane clusters 6 and 7 as well as the polymeric diacetatotetracarbonyl-diruthenium (8) have catalytic activity comparable to that of rhodium(II) carboxylates for the cyclopropanation of simple alkenes, cycloalkenes, 1,3-dienes, enol ethers, and styrene with diazoacetic esters. Catalyst 8 also proved exceptionally suitable for the cyclopropanation using a-diazo-a-trialkylsilylacetic esters. ... [Pg.447]

Bis(camphorquinone-a-dioximato)cobalt(II) (10) has been developed as a catalyst for enan-tioselective cyclopropanation reactions. It allows selective carbene transfer from diazoacetic esters to terminal C-C double bonds which are in conjugation with vinyl, aryl, alkoxycarbonyl or cyano groups, but not to alkyl-substituted alkenes, cycloalkenes, 1,3-dienes and al-lenes. The unusual chemoselectivity and some other experimental observations make the two mechanistic pathways proposed vide supra) questionable for these special carbene-transfer reactions. In contrast, the cobalt(II) complex 11 allows not only the cyclopropanation of styrene but also of oct-l-ene, a nonactivated alkene (ethyl diazoacetate, 35 °C, 3mol% of catalyst yield 50-60%). ... [Pg.449]

Cyclopropanation reactions with these catalysts are typically carried out with 0.5-2 mol% (with respect to the diazo compound) of catalyst and a five- to tenfold excess of alkene. Under these conditions, the formation of formal carbene dimers [e.g. diethyl ( )-but-2-enedioate and (Z)-but-2-enedioate from ethyl diazoacetate], arising from the competition between alkene and the metal-carbene intermediate for the diazo compound, can be largely suppressed. It has been shown, however, that the control of the addition rate of the diazoacetic ester has no effect on the cyclopropane yield with (dibenzonitrile)palladium(II) chloride as catalyst, in contrast to tetraacetatodirhodium, Rhg(CO)ig, and CuCl P(OR)3. ... [Pg.449]

The cyclopropanation of gaseous alkenes, butadiene, and allene (see Section 1.2.1.2.4.2.6.3.3., Table 11, entry 1) by diazoacetic esters can be achieved by passing a vapor-gas mixture of the alkene and the diazo compound at atmospheric pressure through a tubular continuous flow reactor which contains a copper catalyst (ca. 10%) deposited on pumice. In this manner, alkyl cyclopropanecarboxylates were obtained in yields of up to 50% with cop-per(II) sulfate (typical reaction temperature 65-110"C, contact time 3.6 s) or copper(II) oxide (85-200°C, 5s) as catalysts. [Pg.453]

Enantioselective carbenoid cyclopropanation of achiral alkenes can be achieved with a chiral diazocarbonyl compound and/or chiral catalyst. In general, very low levels of asymmetric induction are obtained, when a combination of an achiral copper or rhodium catalyst and a chiral diazoacetic ester (e.g. menthyl or bornyl ester ) or a chiral diazoacetamide ° (see Section 1.2.1.2.4.2.6.3.3., Table 14, entry 3) is applied. A notable exception is provided by the cyclopropanation of styrene with [(3/ )-4,4-dimethyl-2-oxotetrahydro-3-furyl] ( )-2-diazo-4-phenylbut-3-enoate to give 5 with several rhodium(II) carboxylate catalysts, asymmetric induction gave de values of 69-97%. ° Ester residues derived from a-hydroxy esters other than ( —)-(7 )-pantolactone are not as equally well suited as chiral auxiliaries for example, catalysis by the corresponding rhodium(II) (S )-lactate provides (lS, 2S )-5 with a de value of 67%. [Pg.456]


See other pages where Cyclopropanation diazoacetate esters is mentioned: [Pg.167]    [Pg.63]    [Pg.79]    [Pg.218]    [Pg.588]    [Pg.691]    [Pg.784]    [Pg.290]    [Pg.290]    [Pg.292]    [Pg.784]    [Pg.292]    [Pg.981]    [Pg.194]    [Pg.192]    [Pg.169]    [Pg.697]    [Pg.435]    [Pg.444]    [Pg.446]   
See also in sourсe #XX -- [ Pg.541 , Pg.543 ]




SEARCH



Cyclopropanation diazoacetates

Cyclopropanations ester

Cyclopropane carboxylates, from diazoacetic esters

Cyclopropanes diazoacetates

Cyclopropanes esters

Diazoacetate

Diazoacetate esters

Diazoacetates

Diazoacetic

Diazoacetic esters

Ester diazoacetates

© 2024 chempedia.info