Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective metal carbene

New catalysts and methods for enantioselective metal carbene reactions in syntheses of O- and N-heterocycles 98PAC1123. [Pg.212]

Molecular mechanics was also used to model enantioselective metal-carbene transformations catalyzed by chiral dirhodium(II) compounds155. Here, a considerably more thorough approach was used, and the experimental structures of the catalysts were accurately reproduced. A difficulty encountered in this study was the parameterization of the metal-carbene intermediate. This might be part of the reason why in some cases the predicted enantioselectivities were opposite to those observed 55. ... [Pg.74]

Remarkably Effective Catalysts for Enantioselective Metal Carbene Transformations... [Pg.45]

Dirhodium(II) tetrakis(carboxamides), constructed with chiral 2-pyrroli-done-5-carboxylate esters so that the two nitrogen donor atoms on each rhodium are in a cis arrangement, represent a new class of chiral catalysts with broad applicability to enantioselective metal carbene transformations. Enantiomeric excesses greater than 90% have been achieved in intramolecular cyclopropanation reactions of allyl diazoacetates. In intermolecular cyclopropanation reactions with monosubsti-tuted olefins, the cis-disubstituted cyclopropane is formed with a higher enantiomeric excess than the trans isomer, and for cyclopropenation of 1-alkynes extraordinary selectivity has been achieved. Carbon-hydro-gen insertion reactions of diazoacetate esters that result in substituted y-butyrolactones occur in high yield and with enantiomeric excess as high as 90% with the use of these catalysts. Their design affords stabilization of the intermediate metal carbene and orientation of the carbene substituents for selectivity enhancement. [Pg.45]

Doyle, M. P. New Catalysts and Methods for Highly Enantioselective Metal Carbene Reactions, Pure Appl. Chem. 1998, 70,1123-1128. [Pg.3]

Metal Carbene TVansformations. The effectiveness of Rh2(55 -MEPY)4 and its 5R-form, Rh2 5R-MEPY)4, is exceptional for highly enantioselective intramolecular cyclopropanation and carbon-hydrogen insertion reactions. Intermolecular cyclopropanation occurs with lower enantiomeric excesses than with alternative chiral copper salicylaldimine or C2-symmetric semicorrin or bis-oxazoline copper catalysts, but intermolecular cyclopropenation exhibits higher enantio-control with Rh2(MEPY)4 catalysts. The methyl carboxylate attachment of Rh2(55-MEPY)4 is far more effective than steri-cally similar benzyl or isopropyl attachments for enantioselective metal carbene transformations. The significant enhancement in enantiocontrol is believed to be due to carboxylate carbonyl stabilization of the intermediate metal carbene and/or to dipolar influences on substrate approach to the carbene center. [Pg.320]

Doyle MP (2004) Metal Carbene Reactions from Dirhodium(II) Catalysts. 13 203-222 Drudis-Sole G, Ujaque G, Maseras F, Lledds A (2005) Enantioselectivity in the Dihydroxyla-tion of Alkenes by Osmium Complexes. 12 79-107... [Pg.282]

An alternative organometallic approach for functionalizing C-H bonds is by means of metal carbene- or metal nitrene-induced C-H insertions (Equations (1) and (2)).35 36 A major advantage of this approach over other methods is that the reaction is routinely catalytic and by using chiral catalysts, high enantioselectivity can be achieved. One of the major challenges with the metal carbene- and metal nitrene-induced C-H insertion is controlling the... [Pg.167]

As shown in the previous two sections, rhodium(n) dimers are superior catalysts for metal carbene C-H insertion reactions. For nitrene C-H insertion reactions, many catalysts found to be effective for carbene transfer are also effective for these reactions. Particularly, Rh2(OAc)4 has demonstrated great effectiveness in the inter- and intramolecular nitrene C-H insertions. The exploration of enantioselective C-H amination using chiral rhodium catalysts has been reported by several groups.225,244,253-255 Hashimoto s dirhodium tetrakis[A-tetrachlorophthaloyl-(A)-/ r/-leuci-nate], Rh2(derived rhodium complex, Rh2(i -BNP)4 48,244 afforded moderate enantiomeric excess for amidation of benzylic C-H bonds with NsN=IPh. [Pg.196]

Chiral dirhodium(II) catalysts with carboxylate or carboxamidate ligands have recently been developed to take advantage of their versatility in metal carbene transformation, and these have now become the catalysts of choice for cyclopropanation. Chiral carboxylate ligands 195,103 196,104 and 197105 have been used for tetrasubstitution around a dirhodium(II) core. However, the enantioselectivity in intermolecular reactions with simple ketenes is marginal. [Pg.316]

As with the Aratani catalysts, enantioselectivities for cyclopropane formation with 4 and 5 are responsive to the steric bulk of the diazo ester, are higher for the trans isomer than for the cis form, and are influenced by the absolute configuration of a chiral diazo ester (d- and 1-menthyl diazoacetate), although not to the same degree as reported for 2 in Tables 5.1 and 5.2. 1,3-Butadiene and 4-methyl- 1,3-pentadiene, whose higher reactivities for metal carbene addition result in higher product yields than do terminal alkenes, form cyclopropane products with 97% ee in reactions with d-men thy 1 diazoacetate (Eq. 5.8). Regiocontrol is complete, but diastereocontrol (trans cis selectivity) is only moderate. [Pg.198]

Dioximato-cobalt(II) catalysts are unusual in their ability to catalyze cyclopropanation reactions that occur with conjugated olefins (e.g., styrene, 1,3-butadiene, and 1-phenyl-1,3-butadiene) and, also, certain a, 3-unsaturated esters (e.g., methyl a-phenylacrylate, Eq. 5.13), but not with simple olefins and vinyl ethers. In this regard they do not behave like metal carbenes formed with Cu or Rh catalysts that are characteristically electrophilic in their reactions towards alkenes (vinyl ethers > dienes > simple olefins a,p-unsaturated esters) [7], and this divergence has not been adequately explained. However, despite their ability to attain high enantioselectivities in cyclopropanation reactions with ethyl diazoacetate and other diazo esters, no additional details concerning these Co(II) catalysts have been published since the initial reports by Nakamura and Otsuka. [Pg.208]

The C2-symmetric 2,6-bis(2-oxazolin-2-yl)pyridine (pybox) ligand was originally applied with Rh for enantioselective hydrosilylation of ketones [79], but Nishiyama, Itoh, and co-workers have used the chiral pybox ligands with Ru(II) as an effective cyclopropanation catalyst 31 [80]. The advantages in the use of this catalyst are the high enantiocontrol in product formation (>95 % ee) and the exceptional diastereocontrol for production of the trans-cyclopropane isomer (>92 8) in reactions of diazoacetates with monosubstituted olefins. Electronic influences from 4-substituents of pyridine in 31 affect relative reactivity (p = +1.53) and enantioselectivity, but not diastereoselectivity [81]. The disadvantage in the use of these catalysts, at least for synthetic purposes, is their sluggish reactivity. In fact, the stability of the intermediate metal carbene has allowed their isolation in two cases [82]. [Pg.210]

However, the use of Rh2(MPPIM)4 provides enhanced enantiocontrol for cyclopropanation of trans-disubstituted double bonds, up to 96% ee in the cases examined [89]. Trisubstitutec allylic double bonds, even that in famesyl diazoacetate (33, Eq. 5.17) [90], undergo effective, efficient, and highly enantioselective cyclopropanation (Eq. 5.17). Product yields are high except foi those cases in which steric factors appear to limit olefin approach to the metal carbene center. [Pg.212]

Chiral Rh(II) oxazolidinones Rh2(BNOX)4 and Rh2(IPOX)4 (25a,b) were not as effective as Rh2(MEPY)4 for enantioselective intramolecular cyclopropanation, even though the steric bulk of their chiral ligand attachments (COOMe versus i-Pr or CH2Ph) are similar. Significantly lower yields and lower enantioselectivides resulted from dinitrogen extrusion from prenyl diazoacetate catalyzed by either Rh2(4.S -lPOX)4 or Rh2(4S-BNOX)4. This difference, and those associated with butenolide formation [91], can be attributed to the ability of the carboxylate substituents to stabilize the carbocation form of the intermediate metal carbene (3b), thus limiting the Rh2(MEPY)4-catalyzed reaction to concerted carbene addition onto both carbon atoms of the C-C double bond. [Pg.213]

The chiral ruthenium(II) carbene complex 8, prepared from diazo(trimethylsilyl)methane, (p-cymene)2ruthenium(II) chloride, and 2,6-bis(4-isopropyloxazolinyl)pyridine, has been introduced as catalyst for the enantioselective cyclopropanation of alkenes with ethyl diazoacetate. The carbene complex 8 also serves as a transfer reagent for trimethylsilylcarbene and cyclopro-panates styrene in 34% yield. This reaction demonstrates the similarities between catalytic and stoichiometric cyclopropanations and between in situ generated and isolated transition metal carbenes. [Pg.823]


See other pages where Enantioselective metal carbene is mentioned: [Pg.175]    [Pg.175]    [Pg.95]    [Pg.210]    [Pg.111]    [Pg.168]    [Pg.168]    [Pg.353]    [Pg.123]    [Pg.578]    [Pg.162]    [Pg.171]    [Pg.224]    [Pg.524]    [Pg.524]    [Pg.77]    [Pg.1054]    [Pg.524]    [Pg.804]    [Pg.556]   


SEARCH



Metal carbene complexes enantioselectivity

Metal carbenes

© 2024 chempedia.info