Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermolecular cyclopropanation

In Corey and Chaykovsky s initial investigation, a cyclic ylide 79 was observed from the reaction of ethyl cinnamate with ylide 1 in addition to 32% of cyclopropane 53. In a similar fashion, an intermolecular cycloaddition between 2-acyl-3,3-bis(methylthio)acrylnitrile 80 and 1 furnished 1-methylthiabenzene 1-oxide 81. Similar cases are found in transformations of ynone 82 to 1-arylthiabenzene 1-oxide 83 and N-cyanoimidate 84 to adduct ylide 85, which was subsequently transformed to 1-methyl-lX -4-thiazin-l-oxide 86. ... [Pg.11]

Although the intramolecular cyclopropanation of simple alkenes easily occurs in those cases where a five- or six-membered ring is formed in addition to the three-membered ring [13], the intermolecular version of this process was described by Barluenga et al. in 1997 [ 14c]. Thus, this reaction has shown a high... [Pg.63]

The first examples of alkene cyclopropanation reactions with alkynylcarbene complexes were reported by Barluenga et al. in 2002 [15]. These intermolecular... [Pg.64]

Non-heteroatom-stabilised Fischer carbene complexes also react with alkenes to give mixtures of olefin metathesis products and cyclopropane derivatives which are frequently the minor reaction products [19]. Furthermore, non-heteroatom-stabilised vinylcarbene complexes, generated in situ by reaction of an alkoxy- or aminocarbene complex with an alkyne, are able to react with different types of alkenes in an intramolecular or intermolecular process to produce bicyclic compounds containing a cyclopropane ring [20]. [Pg.65]

In 2004, Molander et al. developed another type of chiral sulfur-containing ligands for the intermolecular Heck reaction. Thus, their corresponding novel cyclopropane-based phosphorus/sulfur palladium complexes proved to be active as catalysts for the reaction between phenyltriflate and dihydrofuran, providing at high temperature a mixture of the expected product and its iso-merised analogue (Scheme 7.7). The major isomer C was obtained with a maximum enantioseleetivity of 63% ee. [Pg.239]

Section B gives some examples of metal-catalyzed cyclopropanations. In Entries 7 and 8, Cu(I) salts are used as catalysts for intermolecular cyclopropanation by ethyl diazoacetate. The exo approach to norbornene is anticipated on steric grounds. In both cases, the Cu(I) salts were used at a rather high ratio to the reactants. Entry 9 illustrates use of Rh2(02CCH3)4 as the catalyst at a much lower ratio. Entry 10 involves ethyl diazopyruvate, with copper acetylacetonate as the catalyst. The stereoselectivity of this reaction was not determined. Entry 11 shows that Pd(02CCH3) is also an active catalyst for cyclopropanation by diazomethane. [Pg.930]

Chapter 10 considers the role of reactive intermediates—carbocations, carbenes, and radicals—in synthesis. The carbocation reactions covered include the carbonyl-ene reaction, polyolefin cyclization, and carbocation rearrangements. In the carbene section, addition (cyclopropanation) and insertion reactions are emphasized. Recent development of catalysts that provide both selectivity and enantioselectivity are discussed, and both intermolecular and intramolecular (cyclization) addition reactions of radicals are dealt with. The use of atom transfer steps and tandem sequences in synthesis is also illustrated. [Pg.1329]

Smooth and efficient cyclopropanation also occurs with copper(II) triflate and diazomethane. Intra- and intermolecular competition experiments show that, in this case, the less substituted double bond reacts preferentially251. The same is true for CuOTf and Cu(BF4)2, whereas with CuX P(OMe)3 (X = Cl, I), CuS04 and cop-per(II) acetylacetonate, cyclopropanation of the more substituted double bond predominates. An example is given for cyclopropanation of 1. [Pg.80]

Pd(OAc)2 works well with strained double bonds as well as with styrene and its ring-substituted derivatives. Basic substituents cannot be tolerated, however, as the failures with 4-(dimethylamino)styrene, 4-vinylpyridine and 1 -vinylimidazole show. In contrast to Rh2(OAc)4, Pd(OAe)2 causes preferential cyclopropanation of the terminal or less hindered double bond in intermolecular competition experiments. These facts are in agreement with a mechanism in which olefin coordination to the metal is a determining factor but the reluctance or complete failure of Pd(II)-diene complexes to react with diazoesters sheds some doubt on the hypothesis of Pd-olefin-carbene complexes (see Sect. 11). [Pg.91]

Intramolecular cyclopropanation of 4-aryl-1 -diazo-2-butanones 240 allows construction of the bicyclo[5.3.0]decane framework 12). In a reaction sequence analogous to that described above for the intermolecular ketocarbenoid reaction, bicyclo-[5.3.0]deca-l,3,5-trien-8-ones 241 are formed. They rearrange to the conjugated isomers 242 at the high temperatures needed if the reaction is catalyzed by copper 2311 or CuCl 232), but can be isolated in excellent yield from the Rh2(OAc)4-promoted reaction which occurs at lower temperature 233... [Pg.178]

Intramolecular oxonium ylide formation is assumed to initialize the copper-catalyzed transformation of a, (3-epoxy diazomethyl ketones 341 to olefins 342 in the presence of an alcohol 333 . The reaction may be described as an intramolecular oxygen transfer from the epoxide ring to the carbenoid carbon atom, yielding a p,y-unsaturated a-ketoaldehyde which is then acetalized. A detailed reaction mechanism has been proposed. In some cases, the oxonium-ylide pathway gives rise to additional products when the reaction is catalyzed by copper powder. If, on the other hand, diazoketones of type 341 are heated in the presence of olefins (e.g. styrene, cyclohexene, cyclopen-tene, but not isopropenyl acetate or 2,3-dimethyl-2-butene) and palladium(II) acetate, intermolecular cyclopropanation rather than oxonium ylide derived chemistry takes place 334 ). [Pg.210]

Intermolecular cyclopropanation of olefins poses two stereochemical problems enantioface selection and diastereoselection (trans-cis selection). In general, for stereochemical reasons, the formation of /ra ,v-cyclopropane is kinetically more favored than that of cis-cyclopropane, and the asymmetric cyclopropanation so far developed is mostly /ram-selective, except for a few examples. Copper, rhodium, ruthenium, and cobalt complexes have mainly been used as the catalysts for asymmetric intermolecular cyclopropanation. [Pg.243]

Complex (85), an excellent catalyst for intermolecular cyclopropanation (vide supra), is also a good catalyst for the cyclization of allyl vinyldiazoacetates, though the enantioselectivity of the cyclization varies with the substrates used (Scheme 79).290... [Pg.253]

The Ru(Pybox- -Pr) complex (91), which induces high trans- and enantioselectivity in intermolecular cyclopropanation, has also been applied to the cyclization of allyl diazoacetates (Scheme 80) 252 The enantioselectivity observed depends largely on the susbstitution pattern of the allyl moiety. [Pg.253]

In addition to siloxy- and alkoxy-substituted VCPs, alkyl- and H-substituted VCPs are also effective in the intermolecular [5 + 2]-cycloaddition reaction (Scheme 11). In general, an increase in the steric bulk of the cyclopropane substituent (H vs. Me vs. Pr1) leads to increased reaction rates, putatively through preferential population of the more reactive as-oid arrangement of the vinyl and cyclopropane moieties.43... [Pg.610]

Unlike the catalytic epoxidation or aziridination reactions of simple alkenes, where enantiocontrol is the only stereochemical differentiation, synthetically effective intermolecular cyclopropanation requires both diastereocontrol and enantiocontrol. High diastereoselectivity for the trans-isomer can be achieved with the use of bulky diazoacetates such as BDA" 187 or DCM97 188. [Pg.315]

Chiral dirhodium(II) catalysts with carboxylate or carboxamidate ligands have recently been developed to take advantage of their versatility in metal carbene transformation, and these have now become the catalysts of choice for cyclopropanation. Chiral carboxylate ligands 195,103 196,104 and 197105 have been used for tetrasubstitution around a dirhodium(II) core. However, the enantioselectivity in intermolecular reactions with simple ketenes is marginal. [Pg.316]

Intramolecular cyclopropanation has a noteworthy advantage. Unlike intermolecular asymmetric cyclopropanation, the intramolecular reaction produces only one diastereomer due to geometric constrains on the fused bicyclic products. Doyle has extensively studied the intramolecular enantioselective reactions of a variety of alkenyl diazoacetates catalyzed by chiral rhodium carboxamides 198 and 200 and has achieved excellent results. [Pg.317]

A stereoselective convergent synthesis of hydroazulenes 538 was also based on a tandem intermolecular cyclopropanation-Cope rearrangement sequence with predictable stereocontrol (equation 211)262. [Pg.843]

Hence, cationic iron carbene complexes such as Cp(CO)2Fe =CHCHZR, in which Z is an electron-withdrawing group, might also be suitable for intermolecular cyclopropanation or C-H insertion reactions. The use of such carbene complexes in organic synthesis has not yet been thoroughly investigated, but could fruitfully supplement the chemistry of acceptor-substituted carbenes. [Pg.125]

The intermolecular reaction of alkynes with acylcarbene complexes normally yields cyclopropenes [587,1022,1060-1062]. Because of the high reactivity of cyclopropenes, however, in some of these reactions unexpected products can result. In particular intramolecular cyclopropanations of alkynes, which would lead to highly strained bicyclic cyclopropenes, often yield rearrangement products of the latter. In many instances these products result from a transient vinylcarbene complex, which can be formed by two different mechanisms (Figure 4.3). [Pg.176]

Fig. 4.19. Enhancement of diastereoselectivity in intermolecular cyclopropanations with sterically demanding diazoacetates [1362]. Fig. 4.19. Enhancement of diastereoselectivity in intermolecular cyclopropanations with sterically demanding diazoacetates [1362].
Since the first experiments with chiral copper complexes reported by Nozaki [650] and Aratani [1027] many different catalysts have been examined, both for intermolecular and intramolecular cyclopropanations (for a review, see [1369]). Syntheses of natural products [955,1370] and drugs [1371] using asymmetric cyclopropanation with chiral electrophilic carbene complexes have been reported. A selection of useful catalysts is given in Figure 4.20 (see also Experimental Procedure 4.1.1). [Pg.220]

For intermolecular cyclopropanations with unsubstituted diazoacetates the highest asymmetric inductions can be achieved with the copper(I) complexes of C2-symmetric, bidentate ligands developed by Pfaltz (e.g. 1) and Evans (2). The chiral rhodium(II) complexes known today do not generally lead to such high enantiomeric excesses as copper complexes in intermolecular cyclopropanations. For intramolecular cyclopropanations, however, chiral rhodium(II) complexes are usually superior to enantiomerically pure copper complexes [1374]. [Pg.220]

The preparation of cyclopropanes by intermolecular cyclopropanation with acceptor-substituted carbene complexes is one of the most important C-C-bond-forming reactions. Several reviews [995,1072-1074,1076,1077,1081] and monographs have appeared. In recent decades chemists have focused on stereoselective intermolecular cyclopropanations, and several useful catalyst have been developed for this purpose. Complexes which catalyze intermolecular cyclopropanations with high enantiose-lectivity include copper complexes [1025,1026,1028,1029,1031,1373,1398-1400], cobalt complexes [1033-1035], ruthenium porphyrin complexes [1041,1042,1230], C2-symmetric ruthenium complexes [948,1044,1045], and different types of rhodium complexes [955,998,999,1002-1004,1010,1062,1353,1401-1405], Particularly efficient catalysts for intermolecular cyclopropanation are C2-symmetric cop-per(I) complexes, as those shown in Figure 4.20. These complexes enable the formation of enantiomerically enriched cyclopropanes with enantiomeric excesses greater than 99%. Illustrative examples of intermolecular cyclopropanations are listed in Table 4.24. [Pg.224]

Table 4.24. Intermolecular cyclopropanation by transition metal-catalyzed decomposition of diazocarbonyl compounds. Table 4.24. Intermolecular cyclopropanation by transition metal-catalyzed decomposition of diazocarbonyl compounds.

See other pages where Intermolecular cyclopropanation is mentioned: [Pg.140]    [Pg.475]    [Pg.65]    [Pg.212]    [Pg.94]    [Pg.96]    [Pg.102]    [Pg.117]    [Pg.434]    [Pg.98]    [Pg.179]    [Pg.198]    [Pg.207]    [Pg.243]    [Pg.246]    [Pg.254]    [Pg.610]    [Pg.612]    [Pg.317]    [Pg.223]    [Pg.716]    [Pg.48]    [Pg.224]   
See also in sourсe #XX -- [ Pg.105 , Pg.106 , Pg.107 , Pg.108 , Pg.109 , Pg.110 , Pg.111 , Pg.112 , Pg.113 , Pg.114 , Pg.115 , Pg.116 , Pg.117 , Pg.118 , Pg.224 , Pg.225 ]

See also in sourсe #XX -- [ Pg.311 ]

See also in sourсe #XX -- [ Pg.257 , Pg.260 , Pg.261 , Pg.262 , Pg.268 ]




SEARCH



Cyclopropanations, intermolecular

Cyclopropanations, intermolecular

© 2024 chempedia.info