Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cuprous chloride, reaction with

Coupling of acetylenes and halides, copper-promoted, 50,100 Cuprous chloride, reaction with an organo-magnesium compound, 50,98... [Pg.77]

The success of the Bart reaction when applied to nuclear- substituted anilines is often much affected by the pH of the reaction-mixture. Furthermore, the yields obtained from some m-substituted anilines, which under the normal conditions are usually low, arc considerably increased by the modifications introduced by Scheller, and by Doak, in which the diazotisation is carried out in ethanolic solution followed by reaction with arsenic trichloride in the presence of a cuprous chloride or bromide catalyst. [Pg.312]

Cuprous cyanide solution. The most satisfactory method is to dissolve the cuprous cyanide (1 mol) in a solution of technical sodium cyanide (2 5-2-6 mols in 600 ml. of water). If it is desired to avoid the preparation of solid cuprous cyanide, the following procedure may be adopted. Cuprous chloride, prepared from 125 g. of copper sulphate crystals as described under 1 above, is suspended in 200 ml. of water contained in a 1-litre round-bottomed flask, which is fitted with a mechanical stirrer. A solution of 65 g. of technical sodium cyanide (96-98 per cent.) in 100 ml. of water is added and the mixture is stirred. The cuprous chloride passes into solution with considerable evolution of heat. As the cuprous cyanide is usually emplo3 ed in some modification of the diazo reaction, it is usual to cool the resulting solution in ice. [Pg.192]

The only reaction which calls for comment here is the formation of red cuprous acetylide with an ammoniacal solution of cuprous chloride ... [Pg.245]

Allyl Chloride. Comparatively poor yields are obtained by the zinc chloride - hydrochloric acid method, but the following procedure, which employs cuprous chloride as a catalyst, gives a yield of over 90 per cent. Place 100 ml. of allyl alcohol (Section 111,140), 150 ml. of concentrated hydrochloric acid and 2 g. of freshly prepared cuprous chloride (Section II,50,i one tenth scale) in a 750 ml. round-bottomed flask equipped with a reflux condenser. Cool the flask in ice and add 50 ml. of concen trated sulphuric acid dropwise through the condenser with frequent shaking of the flask. A little hydrogen chloride may be evolved towards the end of the reaction. Allow the turbid liquid to stand for 30 minutes in order to complete the separation of the allyl chloride. Remove the upper layer, wash it with twice its volume of water, and dry over anhydrous calcium chloride. Distil the allyl chloride passes over at 46-47°. [Pg.276]

Sta.rting from Phenol. Phenol can be selectively oxidized into -benzoquinone with oxygen. The reaction is catalyzed by cuprous chloride. At low catalyst concentration, the principal drawback of this method is the high pressure of oxygen that is required, leading to difficult safety procedures. It appears that a high concentration of the catalyst (50% of Cu(I)—phenol) allows the reaction to proceed at atmospheric pressure (58). [Pg.489]

Bromination of isoprene using Br2 at —5 ° C in chloroform yields only /n j -l,4-dibromo-2-methyl-2-butene (59). Dry hydrogen chloride reacts with one-third excess of isoprene at —15 ° C to form the 1,2-addition product, 2-chloro-2-methyl-3-butene (60). When an equimolar amount of HCl is used, the principal product is the 1,4-addition product, l-chloro-3-methyl-2-butene (61). The mechanism of addition is essentially all 1,2 with a subsequent isomerization step which is catalyzed by HCl and is responsible for the formation of the 1,4-product (60). The 3,4-product, 3-bromo-2-methyl-1-butene, is obtained by the reaction of isoprene with 50% HBr in the presence of cuprous bromide (59). Isoprene reacts with the reactive halogen of 3-chlorocyclopentene (62). [Pg.465]

For reaction with hydrogen haUdes, the substitution reaction with haUde ion easily occurs when a cuprous or cupric compound is used as the catalyst (23) and yields a halogenated aHyl compound. With a cuprous compound as the catalyst at 18 °C, the reaction is completed in 6 h. Zinc chloride is also a good catalyst (24), but a by-product, diaHyl ether, is formed. [Pg.73]

In some instances a carbon-carbon bond can be formed with C-nucleophiles. For example, 3-carboxamido-6-methylpyridazine is produced from 3-iodo-6-methylpyridazine by treatment with potassium cyanide in aqueous ethanol and l,3-dimethyl-6-oxo-l,6-dihydro-pyridazine-4-carboxylic acid from 4-chloro-l,3-dimethylpyridazin-6-(lH)-one by reaction with a mixture of cuprous chloride and potassium cyanide. Chloro-substituted pyridazines react with Grignard reagents. For example, 3,4,6-trichloropyridazine reacts with f-butyl-magnesium chloride to give 4-t-butyl-3,5,6-trichloro-l,4-dihydropyridazine (120) and 4,5-di-t-butyl-3,6-dichloro-l,4-dihydropyridazine (121) and both are converted into 4-t-butyl-3,6-dichloropyridazine (122 Scheme 38). [Pg.28]

Nitrophenylarsonic acid has been prepared by heating p-nitrobenzenediazonium chloride with arsenious acid in hydrochloric acid, by the action of -nitrobenzenediazonium chloride on sodium arsenite, by the action of sodium arsenite on sodium -nitrobenzeneisodiazo oxide, by the diazotization of -nitro-aniline in acetic acid in the presence of arsenic chloride and cuprous chloride, and by the reaction of -nitrobenzenediazonium borofluoride with sodium arsenite in the presence of cuprous chloride. ... [Pg.62]

Bromination of the enolate anion from the reaction of 3j -acetoxypregna-5,16-dien-20-one (1) with methylmagnesium bromide in the presence of cuprous chloride affords (after treatment with sodium iodide to dehalo-genate any 5,6-dibromide) a mixture of 17a-bromo- and 17)5-bromo-16a-methyl compounds (11) and (12) in a ratio 9 1. The 17a-iodides can be obtained in an analogous reaction. [Pg.76]

Reaction.—a too c.c. flask to a short upright condenser (see Fig. 86) and to the upper end of the condensei attach a vertical delivery tube, dipping into an ammoniacal cuprous chloride solution. Pour 2—3 c.c. of ethylene bromide into the flask with 4 times its volume of strong methyl alcoholic potash, which is prepared by boiling methyl alcohol with excess of caustic potash on the water-bath with upright condenser. On gently heating, a rapid evolution of acetylene occurs and the characteristic brown copper compound (C2H,Cu,HjO) is precipitated from the cuprous chloride solution. [Pg.64]

Benzaldehyde.—The aldehydes of the aromatic seiies may also be obtained by the oxidation of a methyl side-chain with chromium oxychloride. The solid brown product, C,H,.CH.)(CrO,CL)2, formed by adding C1O2CIJ to toluene, dissolved in carbon bisulphide, is decomposed with water, and benzaldehyde sepaiates out (Etard). Other methods for pie-paring aromatic aldehydes are (i) the Fiiedel-Crafts reaction, in which a mixture of carbon monoxide and hydrogen chloride aie passed into the hydrocaibon in presence of aluminium chloride and a little cuprous chloride,... [Pg.300]

Aminocyclopropanes were prepared from enamines by the addition of Simmons-Smith reagent (688) or best through the cuprous-chloride-promoted decomposition of diazomethane (689). The reaction of an enamine with chloroform and base and opening of the resultant aminocyclopropane to an ynamine was reported (690). [Pg.379]

Photolytic reactions of dienes frequently give complex mixtures of rearranged products. Described here, however, is a photolytic isomerization of 1,5-cyclooctadiene (present in solution, in part, as a complex with cuprous chloride) that affords a good yield of one product. [Pg.130]

When aqueous solutions of aromatic and heteroaromatic diazonium salts are treated with cuprous chloride, -bromide, or -cyanide, the corresponding aromatic chlorides, bromides, or cyanides are formed, respectively. In many cases the anions mentioned must be present in excess. This reaction, the Sandmeyer reaction, was discovered by Sandmeyer in 1884. A variant carried out with copper powder and HBr or HC1 was for many years called the Gattermann reaction (Gattermann, 1890). As it is often confused with the Gattermann-Koch reaction (ArH + CO + HC1 ArCHO), and as it is mechanistically not significantly different from Sandmeyer s procedure, the name Gattermann reaction should be avoided. [Pg.230]

In a dry, 1-1., two-necked flask, equipped with a mechanical stirrer and a reflux condenser fitted with a drying tube, are placed 17.8 g. (0.100 mole) of anthracene (Note 1), 27.2 g. (0.202 mole) of anhydrous cupric chloride (Note 2), and 500 ml. of carbon tetrachloride (Note 3). The reaction mixture is stirred and heated under reflux for 18-24 hours. The brown cupric chloride is gradually converted to white cuprous chloride, and hydrogen chloride is gradually evolved. At the end of the reaction the cuprous chloride is removed by filtration, and the carbon tetrachloride solution is passed through a 35-mm. chromatographic column filled with 200 g. of alumina (Note 4). The column is eluted with 400 ml. of carbon tetrachloride. The combined eluates are evaporated to dryness to give 19-21 g. (89-99%) of 9-chloroanthracene as a lemon-yellow solid, m.p. 102-104° (Note 5). Crystallization of the product from petroleum ether... [Pg.15]

Reaction of bisphenol with chloronitroaromatic compounds was generally performed in dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) at reflux using K2C03 as a base.108 109 It is possible to achieve this condensation in Ullmann s conditions by using a cuprous chloride or iodide-pyridine system as a catalyst when this reaction is performed with deactivated aromatic compounds, it gives too poor yields110 ultrasounds can dramatically improve yields without solvent.111... [Pg.295]

The Ullman reaction has long been known as a method for the synthesis of aromatic ethers by the reaction of a phenol with an aromatic halide in the presence of a copper compound as a catalyst. It is a variation on the nucleophilic substitution reaction since a phenolic salt reacts with the halide. Nonactivated aromatic halides can be used in the synthesis of poly(arylene edier)s, dius providing a way of obtaining structures not available by the conventional nucleophilic route. The ease of halogen displacement was found to be the reverse of that observed for activated nucleophilic substitution reaction, that is, I > Br > Cl F. The polymerizations are conducted in benzophenone with a cuprous chloride-pyridine complex as a catalyst. Bromine compounds are the favored reactants.53,124 127 Poly(arylene ether)s have been prepared by Ullman coupling of bisphenols and... [Pg.346]

Treatment of diazonium salts with cuprous chloride or bromide leads to aryl chlorides or bromides, respectively. In either case the reaction is called the Sandmeyer reaction The reaction can also be carried out with copper and HBr or HCl, in which case it is called the Gatterman reaction (not to be confused with 11-16). The Sandmeyer reaction is not useful for the preparation of fluorides or iodides, but for bromides and chlorides it is of wide scope and is probably the best way of introducing bromine or chlorine into an aromatic ring. The yields are usually high. [Pg.936]

As with other metals, cupric and cuprous halides can detonate in contact with potassium. In addition, the action of cuprous chloride on lithium azide gives rise to a very violent reaction. [Pg.208]


See other pages where Cuprous chloride, reaction with is mentioned: [Pg.425]    [Pg.154]    [Pg.190]    [Pg.200]    [Pg.591]    [Pg.618]    [Pg.759]    [Pg.466]    [Pg.29]    [Pg.160]    [Pg.85]    [Pg.35]    [Pg.187]    [Pg.88]    [Pg.322]    [Pg.130]    [Pg.974]    [Pg.646]    [Pg.647]    [Pg.117]    [Pg.922]    [Pg.25]    [Pg.74]    [Pg.647]    [Pg.245]   


SEARCH



Chloride cuprous, reaction with aryl

Cuprous

Cuprous chlorid

Cuprous chloride

Cuprous chloride reaction with aryl diazonium salts

Cuprous chloride, reaction

© 2024 chempedia.info