Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cumene concentration

It is noted that the microporous effect was greater in the disproportionation of 1,2,4-TrMB than in the cracking of cumene. As shown in the previous paper [14], the disproportionation of 1,2,4-TrMB at 200°C proceeds via a bimolecular transition state and obeys the second order kinetics. In contrast, the cracking of cumene is the first order kinetics with respect to cumene concentration. Thus, it seems that the microporous effect is exerted more significantly in the second order reaction (disproportionation) than in the first order reaction (cracking) if pore structure plays an important role in localizing concentration of reactant molecules. [Pg.382]

The results of a study of the zinc diisopropyl dithiophosphate-inhib-ited oxidation of cumene at 60°C. are shown in Figures 1 to 3. The initial oxidation rate is directly proportional to the AIBN concentration, but the dependence of initial rate on the cumene concentration or the reciprocal of the zinc salt concentration, although reasonably linear, is not in direct proportion. [Pg.336]

Figure 6.16 displays the temperature profile and liquid-phase molar fractions for cumene and DIPB. It may be observed that the temperature is practically constant over the reactive sections with a first plateau at 200 °C and a second one at 210 °C. The top temperature is at 198 °C while the bottom temperature climbs to 242 °C. The explanation may be found in the variation of concentrations for cumene and DIPB in the liquid phase. The maximum reaction rate takes place on the stages where propylene is injected. The cumene concentration increases rapidly and reaches a flat trend corresponding to the exhaustion of the propylene in liquid phase. It may be seen that the amount of DIPB increases considerably in the second reaction zone. This variation is very different from that with a cocurrent PFR. The above variations suggest that the productivity could be improved by providing several side-stream injections and/or optimizing the distribution of catalyst activity. [Pg.198]

Table 4. Gas Flowrate 1500 cc/min Split 0.5 and Period 20 min. Cumene Concentration < 15%. Table 4. Gas Flowrate 1500 cc/min Split 0.5 and Period 20 min. Cumene Concentration < 15%.
Table S.Liquid feed Temperature = 41°C and Cumene Concentration < 15%. Table S.Liquid feed Temperature = 41°C and Cumene Concentration < 15%.
As described above, DMBA is the major by-product from a moderate thermal decomposition of CHP in the oxidation process, due to the presence of (excess) cumene. It is obvious that the radical mechanism must change tov rards higher CHP concentrations as the cumene concentration largely decreases. Thus, it seems implausible to describe the thermal decomposition of CHP v rith only one kinetic model for the whole concentration range between 0 and 100 wt%. [Pg.22]

This behavior is fairly easy to understand. Cumene s mole fraction decreases above the reboiler because it is the least volatile conponent. Since there is a large amount of cumene in the feed, there must be a finite concentration at the feed stage. Thus, after the initial decrease there is a plateau to the feed stage. Note that the concentration of cumene on the feed stage is not the same as in the feed. Above the feed stage, cumene concentration decreases rapidly because cumene is the least volatile conponent. [Pg.229]

The data on the ozonolysis of cumene in the presence of transition metals are very scant [106, 107], This reaction has been studied mainly in sulfuric acid medium and low cumene concentrations. Having this in mind we have carried out the ozonolysis reaction both in pure and 50% solutions of acetic acid [57],... [Pg.423]

DIPB reaction by reducing the cumene concentration in the reactor. [Pg.452]

As the single-pass conversion of propylene (the limiting reactant) in the reactor is reduced, the DIPB production decreases due to the lowering of the cumene concentration in the reactor. At some point, the second distillation column and the associated equipment can be removed, because all the DIPB produced can leave the process in the cumene product. Stream 13. [Pg.453]

Co = cumene concentration in feed Po = inhibitor concentration in feed... [Pg.372]

There are many variations of the basic process and the patent Hterature is extensive. Several key patents describe the technology (16). The process steps are oxidation of cumene to a concentrated hydroperoxide, cleavage of the hydroperoxide, neutralization of the cleaved products, and distillation to recover acetone. [Pg.95]

In the first step cumene is oxidized to cumene hydroperoxide with atmospheric air or air enriched with oxygen ia one or a series of oxidizers. The temperature is generally between 80 and 130°C and pressure and promoters, such as sodium hydroxide, may be used (17). A typical process iavolves the use of three or four oxidation reactors ia series. Feed to the first reactor is fresh cumene and cumene recycled from the concentrator and other reactors. Each reactor is partitioned. At the bottom there may be a layer of fresh 2—3% sodium hydroxide if a promoter (stabilizer) is used. Cumene enters the side of the reactor, overflows the partition to the other side, and then goes on to the next reactor. The air (oxygen) is bubbled ia at the bottom and leaves at the top of each reactor. [Pg.95]

This procedure may result in a concentration of cumene hydroperoxide of 9—12% in the first reactor, 15—20% in the second, 24—29% in the third, and 32—39% in the fourth. Yields of cumene hydroperoxide may be in the range of 90—95% (18). The total residence time in each reactor is likely to be in the range of 3—6 h. The product is then concentrated by evaporation to 75—85% cumene hydroperoxide. The hydroperoxide is cleaved under acid conditions with agitation in a vessel at 60—100°C. A large number of nonoxidising inorganic acids are usehil for this reaction, eg, sulfur dioxide (19). [Pg.96]

A typical phenol plant based on the cumene hydroperoxide process can be divided into two principal areas. In the reaction area, cumene, formed by alkylation of benzene and propylene, is oxidized to form cumene hydroperoxide (CHP). The cumene hydroperoxide is concentrated and cleaved to produce phenol and acetone. By-products of the oxidation reaction are acetophenone and dimethyl benzyl alcohol (DMBA). DMBA is dehydrated in the cleavage reaction to produce alpha-methylstyrene (AMS). [Pg.288]

The concentrated cumene hydroperoxide solution from the cumene stripping section is fed to the cleavage reaction. The cleavage reaction is carried... [Pg.288]

Hydroperoxide Process. The hydroperoxide process to propylene oxide involves the basic steps of oxidation of an organic to its hydroperoxide, epoxidation of propylene with the hydroperoxide, purification of the propylene oxide, and conversion of the coproduct alcohol to a useful product for sale. Incorporated into the process are various purification, concentration, and recycle methods to maximize product yields and minimize operating expenses. Commercially, two processes are used. The coproducts are / fZ-butanol, which is converted to methyl tert-huty ether [1634-04-4] (MTBE), and 1-phenyl ethanol, converted to styrene [100-42-5]. The coproducts are produced in a weight ratio of 3—4 1 / fZ-butanol/propylene oxide and 2.4 1 styrene/propylene oxide, respectively. These processes use isobutane (see Hydrocarbons) and ethylbenzene (qv), respectively, to produce the hydroperoxide. Other processes have been proposed based on cyclohexane where aniline is the final coproduct, or on cumene (qv) where a-methyl styrene is the final coproduct. [Pg.138]

A relatively small number of studies have reported on the effects of cumene on plants, fish, and other organisms. Studies of the effects of cumene on fresh and saltwater fish indicate the lowest reported toxic concentration (LC q) for fishes was 20 to 30 mg/L (18). The solubiUty of cumene is about 50 mg/L (19). Among invertebrates, the lowest reported concentration that was toxic to test organisms was 0.012 mg/L after 18 hours (20). The only available data on the effect of cumene on aquatic plants indicate that the photosynthesis of several species was inhibited at concentrations from 9 to 21 mg/L (19). [Pg.364]

The principal use of the alkylation process is the production of high octane aviation and motor gasoline blending stocks by the chemical addition of C2, C3, C4, or C5 olefins or mixtures of these olefins to an iso-paraffin, usually isobutane. Alkylation of benzene with olefins to produce styrene, cumene, and detergent alkylate are petrochemical processes. The alkylation reaction can be promoted by concentrated sulfuric acid, hydrofluoric acid, aluminum chloride, or boron fluoride at low temperatures. Thermal alkylation is possible at high temperatures and very high pressures. [Pg.223]

Cumene (isopropylhenzene), a liquid, is soluble in many organic solvents hut not in water. It is present in low concentrations in light refinery streams (such as reformates) and coal liquids. It may he obtained by distilling (cumene s B.P. is 152.7°C) these fractions. [Pg.269]

In this process (Figure 10-6), cumene is oxidized in the liquid phase. The oxidation product is concentrated to 80% cumene hydroperoxide by... [Pg.271]

Low Conversion Reactors. The major problem in temperature control in low conversion reactors is the orders cf magnitude increase in viscosity as the conversion increases. Fig.8 shows the viscosity of a polystyrene solution as the function of percent PS. The data are for polystyrene with a Staudinger molecular weight of 60,000 at 100 C and 150 C in a cumene solution, a satisfactory analog for styrene monomer solutions. As the polymer concentration increases from 0 to 60%, viscosity increases from about 1 cp to 10 cp. [Pg.79]

P 62] The acid cleavage was carried out at 45-75 °C at a pressure of 1-5 bar. Water may be added at levels of 0.3-1 wt.-% [64]. This addition was made upstream of the micro reactor or directly inside. The residence time was set in the range 0.5-5 min. Sulfuric acid was used as catalyst. By changing residence time and acid addition, the residual cumene hydroperoxide content was favorably reduced to 0.1-0.3 wt.-%. For this, an acid concentration of 50-500 ppm is typically required. Part of the so cleaved product stream may be recycled. [Pg.540]

The rates of multiphase reactions are often controlled by mass tran.sfer across the interface. An enlargement of the interfacial surface area can then speed up reactions and also affect selectivity. Formation of micelles (these are aggregates of surfactants, typically 400-800 nm in size, which can solubilize large quantities of hydrophobic substance) can lead to an enormous increase of the interfacial area, even at low concentrations. A qualitatively similar effect can be reached if microemulsions or hydrotropes are created. Microemulsions are colloidal dispersions that consist of monodisperse droplets of water-in-oil or oil-in-water, which are thermodynamically stable. Typically, droplets are 10 to 100 pm in diameter. Hydrotropes are substances like toluene/xylene/cumene sulphonic acids or their Na/K salts, glycol.s, urea, etc. These. substances are highly soluble in water and enormously increase the solubility of sparingly. soluble solutes. [Pg.9]

Emulsion oxidation of alkylaromatic compounds appeared to be more efficient for the production of hydroperoxides. The first paper devoted to emulsion oxidation of cumene appeared in 1950 [1], The kinetics of emulsion oxidation of cumene was intensely studied by Kucher et al. [2-16], Autoxidation of cumene in the bulk and emulsion occurs with an induction period and autoacceleration. The simple addition of water inhibits the reaction [6], However, the addition of an aqueous solution of Na2C03 or NaOH in combination with vigorous agitation of this system accelerates the oxidation process [1-17]. The addition of an aqueous phase accelerates the oxidation and withdrawal of water retards it [6]. The addition of surfactants such as salts of fatty acids accelerates the oxidation of cumene in emulsion [3], The higher the surfactant concentration the faster the cumene autoxidation in emulsion [17]. The rates of cumene emulsion oxidation after an induction period are given below (T = 353 K, [RH] [H20] = 2 3 (v/v), p02 = 98 kPa [17]). [Pg.436]

The effect of jumping of the maximal hydroperoxide concentration after the introduction of hydrogen peroxide is caused by the following processes. The cumyl hydroperoxide formed during the cumene oxidation is hydrolyzed slowly to produce phenol. The concentration of phenol increases in time and phenol retards the oxidation. The concentration of hydroperoxide achieves its maximum when the rate of cumene oxidation inhibited by phenol becomes equal to the rate of hydroperoxide decomposition. The lower the rate of oxidation the higher the phenol concentration. Hydrogen peroxide efficiently oxidizes phenol, which was shown in special experiments [8]. Therefore, the introduction of hydrogen peroxide accelerates cumene oxidation and increases the yield of hydroperoxide. [Pg.437]

Aryl phosphites inhibit the initiated oxidation of hydrocarbons and polymers by breaking chains on the reaction with peroxyl radicals (see Table 17.3). The low values of the inhibition coefficient / for aryl phosphites are explained by their capacity for chain autoxidation [14]. Quantitative investigations of the inhibited oxidation of tetralin and cumene at 338 K showed that with increasing concentration of phosphite /rises tending to 1 [27]. [Pg.599]


See other pages where Cumene concentration is mentioned: [Pg.215]    [Pg.31]    [Pg.338]    [Pg.216]    [Pg.147]    [Pg.123]    [Pg.679]    [Pg.740]    [Pg.215]    [Pg.31]    [Pg.338]    [Pg.216]    [Pg.147]    [Pg.123]    [Pg.679]    [Pg.740]    [Pg.33]    [Pg.478]    [Pg.479]    [Pg.481]    [Pg.535]    [Pg.364]    [Pg.638]    [Pg.115]    [Pg.93]    [Pg.151]    [Pg.48]    [Pg.1042]    [Pg.463]    [Pg.479]    [Pg.365]    [Pg.437]   
See also in sourсe #XX -- [ Pg.510 ]




SEARCH



Cumene

Cumenes

© 2024 chempedia.info