Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystallization processes control

Crystallization process control is desirable from a number of standpoints. The primary objective is often to meet customer requirements by achieving consistent product quality to a desired specification of crystal size, size distribution and purity. Secondly, process requirements often dictate maintenance of stable crystallizer operation, the avoidance of fines and encrustation, and the minimization of subsequent downstream processing. [Pg.287]

Batch crystallization process control using the first-principles and direct design approaches were discussed. The first-principles approach utilizes crystallization process models, which require the associated determination of crystallization kinetics. The optimal seed characteristics and/or supersaturation profile to obtain the desired product characteristics are then computed. The direct design approach involves feedback control of a state measurement, in this case the solution... [Pg.869]

Larsen, P. A., D. B. Patience, and J. B. Rawlings, Industrial Crystallization Process Control, IEEE Control Systems, 26, 70 (2006). [Pg.463]

The physical mechanisms of the crystallization process control the resulting morphology of the solid state and hence the properties of the product. Despite the fact that polyethylene has been studied intensively for over 60 years, crystallization mechanisms are incompletely understood. On a macroscopic scale, polyethylene morphologies can be accurately described, but the trajectories of the individual molecules, which are controlled by crystallization mechanisms and which ultimately determine properties, are known only to a hist approximation. The study of polyethylene crystallization and morphology involves the dednction of molecular mechanisms from crystallization kinetics and solid-state bnlk properties. [Pg.84]

Gas AntisolventRecrystallizations. A limitation to the RESS process can be the low solubihty in the supercritical fluid. This is especially evident in polymer—supercritical fluid systems. In a novel process, sometimes termed gas antisolvent (GAS), a compressed fluid such as CO2 can be rapidly added to a solution of a crystalline soHd dissolved in an organic solvent (114). Carbon dioxide and most organic solvents exhibit full miscibility, whereas in this case the soHd solutes had limited solubihty in CO2. Thus, CO2 acts as an antisolvent to precipitate soHd crystals. Using C02 s adjustable solvent strength, the particle size and size distribution of final crystals may be finely controlled. Examples of GAS studies include the formation of monodisperse particles (<1 fiva) of a difficult-to-comminute explosive (114) recrystallization of -carotene and acetaminophen (86) salt nucleation and growth in supercritical water (115) and a study of the molecular thermodynamics of the GAS crystallization process (21). [Pg.228]

It is often important to control the CSD of pharmaceutical compounds, eg, in the synthesis of human insulin, which is made by recombinant DNA techniques (1). The most favored size distribution is one that is monodisperse, ie, all crystals are of the same size, so that the rate at which the crystals dissolve and are taken up by the body is known and reproducible. Such uniformity can be achieved by screening or otherwise separating the desired size from a broader distribution or by devising a crystallization process that will produce insulin in the desired form. The latter of these options is preferable, and considerable effort has been expended in that regard. [Pg.338]

Several reported chemical systems of gas-liquid precipitation are first reviewed from the viewpoints of both experimental study and industrial application. The characteristic feature of gas-liquid mass transfer in terms of its effects on the crystallization process is then discussed theoretically together with a summary of experimental results. The secondary processes of particle agglomeration and disruption are then modelled and discussed in respect of the effect of reactor fluid dynamics. Finally, different types of gas-liquid contacting reactor and their respective design considerations are overviewed for application to controlled precipitate particle formation. [Pg.232]

Thus, methods are now becoming available such that process systems can be designed to manufacture crystal products of desired chemical and physical properties and characteristics under optimal conditions. In this chapter, the essential features of methods for the analysis of particulate crystal formation and subsequent solid-liquid separation operations discussed in Chapters 3 and 4 will be recapitulated. The interaction between crystallization and downstream processing will be illustrated by practical examples and problems highlighted. Procedures for industrial crystallization process analysis, synthesis and optimization will then be considered and aspects of process simulation, control and sustainable manufacture reviewed. [Pg.261]

Rawlings, J.B., Miller, S.M. and Witkowski, W.R., 1993. Model identification and control of solution crystallization processes A review. Industrial and Engineering Chemistry Research, 32, 1275-1296. [Pg.319]

Rawlings, J.B., Sink, C.W. and Miller, S.M., 2001. Control of crystallization processes. In Handbook of Industrial Crystallization. Ed. A.S. Myerson, 2nd edition. Oxford Butterworth-Heinemann. [Pg.319]

That benzene hexachloride isomer mixture is then the raw material for lindane production. The production of lindane per se is not a chemical synthesis operation but a physical separation process. It is possible to influence the gamma isomer content of benzene hexachloride to an extent during the synthesis process. Basically, however, one is faced with the problem of separating a 99%-plus purity gamma isomer from a crude product containing perhaps 12 to 15% of the gamma isomer. The separation and concentration process is done by a carefully controlled solvent extraction and crystallization process. One such process is described by R.D. Donaldson et al. Another description of hexachlorocyclohexane isomer separation is given by R.H. Kimball. [Pg.879]

To avoid misunderstanding, it should be emphasized that if the transition from one type of crystallization to the other one is considered, this does not imply a transformation of crystals of one type into the other one during stretching. In contrast, if the molecule enters a folded-chain crystal, it is virtually impossible to extend it. In this case, we raise the question, which of the two crystallization mechanisms controls the process at each given value of molecular orientation in the melt (this value being kept constant in the crystallization process during subsequent cooling of the system). At /J < /3cr, only folded-chain crystals are formed whereas at / > only fibrillar crystals result at /8 /3cr, crystals of both types can be formed. [Pg.222]

The instrument has been evaluated by Luster, Whitman, and Fauth (Ref 20). They selected atomized Al, AP and NGu as materials for study that would be representative of proplnt ingredients. They found that only 2000 particles could be counted in 2 hours, a time arbitrarily chosen as feasible for control work. This number is not considered sufficient, as 18,000 particles are required for a 95% confidence level. Statistical analysis of results obtained for AP was impossible because of discrepancies In the data resulting from crystal growth and particle agglomeration. The sample of NGu could not be handled by the instrument because it consisted of a mixt of needles and chunky particles. They concluded that for dimensionally stable materials such as Al or carborundum, excellent agreement was found with other methods such as the Micromerograph or visual microscopic count. But because of the properties peculiar to AP and NGu, the Flying Spot Particle Resolver was not believed suitable for process control of these materials... [Pg.531]

For an example of a control chart see Fig. 1.31 and Sections 4.1 and 4.8. Control charts have a grave weakness the number of available data points must be relatively high in order to be able to claim statistical control . As is often the case in this age of increasingly shorter product life cyeles, decisions will have to be made on the basis of a few batch release measurements the link between them and the more numerous in-process controls is not necessarily straight-forward, especially if IPC uses simple tests (e.g. absorption, conductivity) and release tests are complex (e.g. HPLC, crystal size). [Pg.85]

The polymer = 8.19 dlg in hexafluoro-2-propanol, HFIP, solution) in Figs 1 and 2 is prepared on photoirradiation by a 500 W super-high-pressure Hg lamp for several hours and subjected to the measurements without purification. The nmr peaks in Fig. 1 (5 9.36, 8.66 and 8.63, pyrazyl 7.35 and 7.23, phenylene 5.00, 4.93, 4.83 and 4.42, cyclobutane 4.05 and 1.10, ester) correspond precisely to the polymer structure which is predicted from the crystal structure of the monomer. The outstanding sharpness of all the peaks in this spectrum indicates that the photoproduct has few defects in its chemical structure. The X-ray patterns of the monomer and polymer in Fig. 2 show that they are nearly comparable to each other in crystallinity. These results indicate a strictly crystal-lattice controlled process for the four-centre-type photopolymerization of the [l OEt] crystal. [Pg.124]


See other pages where Crystallization processes control is mentioned: [Pg.287]    [Pg.17]    [Pg.865]    [Pg.726]    [Pg.141]    [Pg.287]    [Pg.287]    [Pg.17]    [Pg.865]    [Pg.726]    [Pg.141]    [Pg.287]    [Pg.226]    [Pg.225]    [Pg.330]    [Pg.174]    [Pg.498]    [Pg.443]    [Pg.3]    [Pg.540]    [Pg.1653]    [Pg.162]    [Pg.371]    [Pg.285]    [Pg.287]    [Pg.289]    [Pg.349]    [Pg.351]    [Pg.618]    [Pg.63]    [Pg.229]    [Pg.528]    [Pg.449]    [Pg.406]    [Pg.178]    [Pg.77]    [Pg.268]    [Pg.737]    [Pg.118]   


SEARCH



Batch crystallization process control

Control crystallization

Control of Crystallization Process

Crystallization controlling

Crystallization process instrumentation and control

Crystallization processes

Crystallizer Control

Crystallizers controller

Crystallizers processes control

Crystallizers processes control

Processes control Crystallizers, design

Processes control baffle) crystallizers

Processes control crystallizer design

Processes control growth type crystallizers

Processes control multistage crystallizers

© 2024 chempedia.info