Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal surfaces, characterized

Unlike the single crystal surface, characterized by a constant distance between neighbouring active sites (r), on the surface of amorphous oxides there should exist a wide distribution of the active site pairs with respect to the distances between them. As it follows from the results of Monte Carlo simulation of adsorption kinetics of Lennard-Jones gas on the amorphous solid surface represented by a normal distribution of the neighbouring active sites on the distances between them and with the account of repulsive lateral interactions described by the Lennard-Jones potential, apparent chemisorption activation energy depends but insignificantly on 0 at its low value (< 0.5), while over this value the energy increases abruptly [104]. From the Monte-Carlo simulation it follows that the dependence of apparent activation energy on 0 can be approximated as [80] ... [Pg.253]

The lattice parameters that we used for the bulk geometry optimization of the crystal structures are those reported by Haisa et al. The optimized bulk crystal structures are used for cleaving crystal surfaces, characterized by their Miller indices. Crystal surfaces are kept fixed in the calculations and no relaxation of the surface structures is considered. The unrelaxed surface slab is constructed via a bulk primitive cell containing sides with the desired Miller index for the surface. Molecules are assigned entirely to the cell where the molecular center of mass resides. The... [Pg.38]

One of the main uses of these wet cells is to investigate surface electrochemistry [94, 95]. In these experiments, a single-crystal surface is prepared by UFIV teclmiqiies and then transferred into an electrochemical cell. An electrochemical reaction is then run and characterized using cyclic voltaimnetry, with the sample itself being one of the electrodes. In order to be sure that the electrochemical measurements all involved the same crystal face, for some experiments a single-crystal cube was actually oriented and polished on all six sides Following surface modification by electrochemistry, the sample is returned to UFIV for... [Pg.314]

Keita B, Nad]o L and K]oller K 1991 Surface characterization of a single crystal of sodium decatungstocerate (IV) by the atomic force microscope Surf. Sc/. Lett. 256 L613... [Pg.1726]

Single-crystal surfaces are characterized by a set of Miller indices that indicate tlie particular crystallographic orientation of the surface plane relative to the bulk lattice [5]. Thus, surfaces are labelled in the same way that atomic planes are labelled in bulk x-ray crystallography. For example, a Ni (111) surface has a surface plane... [Pg.1759]

Dehydration reactions are typically both endothermic and reversible. Reported kinetic characteristics for water release show various a—time relationships and rate control has been ascribed to either interface reactions or to diffusion processes. Where water elimination occurs at an interface, this may be characterized by (i) rapid, and perhaps complete, initial nucleation on some or all surfaces [212,213], followed by advance of the coherent interface thus generated, (ii) nucleation at specific surface sites [208], perhaps maintained during reaction [426], followed by growth or (iii) (exceptionally) water elimination at existing crystal surfaces without growth [62]. [Pg.117]

There is a very rich literature and a comprehensive book6 on the role of promoters in heterogeneous catalysis. The vast majority of studies refers to the adsorption of promoters and to the effect of promoters on the chemisorptive state of coadsorbed species on well characterized single crystal surfaces. A... [Pg.15]

Most of the published promotional kinetic studies have been performed on well defined (single crystal) surfaces. In many cases atmospheric or higher pressure reactors have been combined with a separate UHV analysis chamber for promoter dosing on the catalyst surface and for application of surface sensitive spectroscopic techniques (XPS, UPS, SIMS, STM etc.) for catalyst characterization. This attempts to bridge the pressure gap between UHV and real operating conditions. [Pg.73]

The importance of surface characterization in molecular architecture chemistry and engineering is obvious. Solid surfaces are becoming essential building blocks for constructing molecular architectures, as demonstrated in self-assembled monolayer formation [6] and alternate layer-by-layer adsorption [7]. Surface-induced structuring of liqnids is also well-known [8,9], which has implications for micro- and nano-technologies (i.e., liqnid crystal displays and micromachines). The virtue of the force measurement has been demonstrated, for example, in our report on novel molecular architectures (alcohol clusters) at solid-liquid interfaces [10]. [Pg.1]

Numerous works have been implemented on tellurium electrochemistry and its adsorption at metal surfaces. The morphological structures of electrodeposited Te layers at various stages of deposition (first UPD, second UPD, and bulk deposition) are now well known [88-93]. As discussed in the previous paragraphs, Stickney and co-workers have carried out detailed characterizations of the first Te monolayer on Au single-crystal surfaces in order to establish the method of electrochemical atomic layer epitaxy of CdTe. [Pg.176]

We have studied the steady-state kinetics and selectivity of this reaction on clean, well-characterized sinxle-crystal surfaces of silver by usinx a special apparatus which allows rapid ( 20 s) transfer between a hixh-pressure catalytic microreactor and an ultra-hixh vacuum surface analysis (AES, XPS, LEED, TDS) chamber. The results of some of our recent studies of this reaction will be reviewed. These sinxle-crystal studies have provided considerable new insixht into the reaction pathway throuxh molecularly adsorbed O2 and C2H4, the structural sensitivity of real silver catalysts, and the role of chlorine adatoms in pro-motinx catalyst selectivity via an ensemble effect. [Pg.210]

Spectroscopic Characterization of Organometallic Centers on Insulator Single Crystal Surfaces ... [Pg.117]

Rigby J, Kondratenkov M (2004) Arene Complexes as Catalysts. 7 181-204 Risse T, Freund H-J (2005) Spectroscopic Characterization of Organometallic Centers on Insulator Single Crystal Surfaces From Metal Carbonyls to Ziegler-Natta Catalysts. 16 117-149... [Pg.286]

The parameters K1/ K2/ and K3 are defined by the refractive indices of the crystal and sample and by the incidence angle [32]. If the sample has uniaxial symmetry, only two polarized spectra are necessary to characterize the orientation. If the optical axis is along the plane of the sample, such as for stretched polymer films, only the two s-polarized spectra are needed to determine kz and kx. These are then used to calculate a dichroic ratio or a P2) value with Equation (25) (replacing absorbance with absorption index). In contrast, a uniaxial sample with its optical axis perpendicular to the crystal surface requires the acquisition of spectra with both p- and s-polarizations, but the Z- and X-axes are now equivalent. This approach was used, through dichroic ratio measurements, to monitor the orientation of polymer chains at various depths during the drying of latex [33]. This type of symmetry is often encountered in non-polymeric samples, for instance, in ultrathin films of lipids or self-assembled monolayers. [Pg.310]

If an electronic equilibrium is set up on the surface, the parameters ij°, rr, and r/+ are strictly fixed. Their values are determined by the position of the Fermi level at the crystal surface, which will be characterized here by the quantity ea or +. These latter quantities are the distances from the Fermi level to the bottom of the conduction band or, accordingly, to the top of the valency band in the plane of the surface. Evidently,... [Pg.162]

We note here that all the information presently available on high molecular weight polymer crystal structures is compatible with the bundle model. While very nearly all crystalline polymer polymorphs involve all-parallel chain arrangements, even the only known exception, namely y-iPP [104,105], where chains oriented at 80° to each other coexist, is characterized by bilayers of parallel chains with opposite orientation. This structure is thus easily compatible with crystallization mechanisms involving deposition of bundles of 5-10 antiparallel stems on the growing crystal surface. Also the preferred growth... [Pg.125]

This chapter deals with the study of structural properties of catalysts and catalytic model surfaces by means of interference effects in scattered radiation. X-ray diffraction is one of the oldest and most frequently applied techniques in catalyst characterization. It is used to identify crystalline phases inside catalysts by means of lattice structural parameters, and to obtain an indication of particle size. Low energy electron diffraction is the surface sensitive analog of XRD, which, however, is only applicable to single crystal surfaces. LEED reveals the structure of surfaces and of ordered adsorbate layers. Both XRD and LEED depend on the constructive interference of radiation that is scattered by relatively large parts of the sample. As a consequence, these techniques require long-range order. [Pg.152]


See other pages where Crystal surfaces, characterized is mentioned: [Pg.162]    [Pg.542]    [Pg.162]    [Pg.542]    [Pg.1780]    [Pg.415]    [Pg.23]    [Pg.78]    [Pg.866]    [Pg.36]    [Pg.248]    [Pg.104]    [Pg.188]    [Pg.223]    [Pg.28]    [Pg.30]    [Pg.507]    [Pg.59]    [Pg.245]    [Pg.249]    [Pg.585]    [Pg.108]    [Pg.68]    [Pg.79]    [Pg.1172]    [Pg.119]    [Pg.126]    [Pg.155]    [Pg.89]    [Pg.115]    [Pg.285]    [Pg.57]    [Pg.175]    [Pg.10]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Crystals characterization

© 2024 chempedia.info