Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolite crystal structures

Vanadium also promotes dehydrogenation reactions, but less than nickel. Vanadium s contribution to hydrogen yield is 20% to 50% of nickel s contribution, but vanadium is a more severe poison. Unlike nickel, vanadium does not stay on the surface of the catalyst. Instead, it migrates to the inner (zeolite) part of the catalyst and destroys the zeolite crystal structure. Catalyst surface area and activity are permanently lost. [Pg.65]

There are several theories about the chemistry of vanadium poisoning. The most prominent involves conversion of VjOj to vanadic acid (H-iVO ) under regenerator conditions. Vanadic acid, through hydrolysis, extracts the tetrahedral alumina in the zeolite crystal structure, causing it to collapse. [Pg.65]

The sodium in the E-cat is the sum of sodium added with the feed and sodium on the fresh catalyst. A number of catalyst suppliers report sodium as soda (Na20). Sodium deactivates the catalyst acid sites and causes collapse of the zeolite crystal structure. Sodium can also reduce the gasoline octane, as discussed earlier. [Pg.108]

Under the mineralogical name zeolite such sieves occur naturally. For technical purposes due to their higher uniformity only synthetic zeolites are used [10], In the empirical formula Me is an exchangeable cation of the valence n (zeolites are cation exchangers). Molecular sieves have a very regular and orderly crystal structure, which is characterized by a three-dimensional system of cavities with a diameter of 11 A. These cavities are interconnected by pores with a constant diameter. The value of this diameter depends on the type of the exchangeable cation Me. It is 5 A, if in the above formula Me stands for 75% Na+ and 25% Ca2+. [Pg.6]

Zeolites are used in various applications such as household detergents, desiccants and as catalysts. In the mid-1960s, Rabo and coworkers at Union Carbide and Plank and coworkers at Mobil demonstrated that faujasitic zeolites were very interesting solid acid catalysts. Since then, a wealth of zeolite-catalyzed reactions of hydrocarbons has been discovered. Eor fundamental catalysis they offer the advantage that the crystal structure is known, and that the catalytically active sites are thus well defined. The fact that zeolites posses well-defined pore systems in which the catalytically active sites are embedded in a defined way gives them some similarity to enzymes. [Pg.199]

Electron crystallography offers an alternative approach in such cases, and here we describe a complete structure determination of the structure of polymorph B of zeolite beta [3] using this technique. The clear advantage of electron microscopy over X-ray powder diffraction for elucidating zeolite structures when they only occur in small domains is demonstrated. In order to test the limit of the structural complexity that can be addressed by electron crystallography, we decided to re-determine the structure of IM-5 using electron crystallography alone. IM-5 was selected for this purpose, because it has one of the most complex framework structures known. Its crystal structure was solved only recently after nine years of unsuccessful attempts [4],... [Pg.47]

For both structures, all final Si positions were obtained with reasonable accuracy (0.1 -0.2 A) by a 3D reconstruction of HRTEM images followed by a distance least-squares refinement. This kind of accuracy is sufficient for normal property analysis, such as catalysis, adsorption and separation, and as a starting point for structure refinement with X-ray powder diffraction data. The technique demonstrated here is general and can be applied not only to zeolites, but also to other complicated crystal structures. [Pg.52]

According to the chemical analysis and coordination distances, the Rietveld refinement of the crystal structure at room temperature revealed 1.2 Co2+ atoms per unit cell at the Col and Co2 sites, whereas the 1.4 Ag+ cations are spread over the Co3 site, from now on referred to as Ag5 for clarity, and two new sites, Ag2 and Ag3, located near Co2 in the 10-membered ring (Fig. 3). In addition, for this catalyst the presence of Ag° clusters outside the zeolite structure was recognized by the detection of a strong reflection at about 40° 28. In agreement with the lower Ag content, in Ag2.7Co2.8AF the Ag3 site... [Pg.288]

In part because of the open crystal structure and resulting low density characteristic of zeolite minerals, analcime is the most voluminous reaction product in the simulations. [Pg.445]

The best correlation of the observed isomerization selectivities was found in terms of the diameter of the intracrystalline cavity, determined from the known crystal structure (9) of these zeolites, as shown in Figure 2. While faujasite, mordenite and ZSM-4 all have 12-membered ring ports and hence should be similar in their diffusion properties, they differ considerably in the size of their largest intracrystalline cavity both mordenite and ZSM-4 have essentially straight channels, whereas faujasite has a large cavity at the intersection of the three-dimensional channel system. [Pg.276]

The expansion of the crystal structure upon substitution of smaller atoms by larger ones is reflected by increasing lattice constants. For a zeolite with cubic symmetry, the lattice constant a decreases with increasing Si/Al ratio. This relation is occasionally used to calculate the Si/Al ratio of the... [Pg.127]

Molecular sieves are porous solids with pores of the size of molecular dimensions, 0.3-2.0nm in diameter. Examples include zeoUtes, carbons, glasses and oxides. Some are crystalline with a uniform pore size deUneated by their crystal structure, for example, zeolites. Most molecular sieves in practice today are zeolites. [Pg.1]

The crystal structures of several metal aluminophosphate molecular sieves, in Innovation Zeolite Mater. Sci. (eds P.J. Grobet, W.J. Mortier, E.F. Vansant, and G. Schulz Eklofi), Stud. Surf. Sci. Gatal., vol. 37, Elsevier, Amsterdam, pp. 269-279. [Pg.22]

B. (1994) Rietveld refinement of the crystal structure of the synthetic porous zincosihcate VPl-7. Zeolites, 14,... [Pg.22]

Bu, X., Feng, P and Stucky, G.D. (1997) Science, 278 (5346), 2080-2085 Feng, P Bu, X., and Stucky, G.D. (1997) Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate. Nature, 388, 735-741 Feng, P Bu, X., Gier, T.E., and Stucky, G.D. (1998) Amine-directed syntheses and crystal structures of phosphate-based zeolite analogs. Microp. Mesoporous Mater., 23 (3-4), 221-229. [Pg.23]

Pluth, J.J., and Smith, J.V. (1990) Crystal structure of boggsite, a new high-silica zeolite with the first three-dimensional channel system bounded by both 12- and 10-rings. Am. Mineral., 75, 501. [Pg.23]

The crystal structure of hydrated NaA a detailed refinement of a pseudosymmet-ric zeolite structure. Z. Kristallogr., 133, 134-149. [Pg.56]

Given the complex nature of the crystal structure and small crystal size with an anisotropic morphology of UZM-5, the normal X-ray diffraction patterns were not sufficient to deduce an unambiguous structure. Thus a multi-technique approach was required to successfully solve the structure, to explain the adsorption properties and by analogy to the structure of other zeolites in order to assess potential applications. [Pg.91]

D. L. (2008) Solving the crystal structures of zeolites using electron diffraction data. 1. The use of potential-density histograms. Acta Crystallogr. A, A64, 284-294. [Pg.162]

Adsorptive separation is a powerful technology in industrial separations. In many cases, adsorption is the only technology available to separate products from industrial process streams when other conventional separation tools fail, such as distillation, absorption, membrane, crystallization and extraction. Itis also demonstrated that zeolites are unique as an adsorbent in adsorptive separation processes. This is because zeolites are crystalline soUds that are composed of many framework structures. Zeolites also have uniform pore openings, ion exchange abiUty and a variety of chemical compositions and crystal particle sizes. With the features mentioned, the degree of zeoUte adsorption is almost infinite. It is also noted that because of the unique characteristics of zeoHtes, such as various pore openings, chemical compositions and structures, many adsorption mechanisms are in existence and are practiced commercially. [Pg.225]

The crystal structure of the zeolite hydrogen faujasite. /. Catal., 13, 221-231. [Pg.475]

The discrepancy in numbers between natural and synthetic varieties is an expression of the usefulness of zeolitic materials in industry, a reflection of their unique physicochemical properties. The crystal chemistry of these aluminosilicates provides selective absorbtion and exchange of a remarkably wide range of molecules. Some zeolites have been called molecular sieves. This property is exploited in the purification and separation of various chemicals, such as in obtaining gasoline from crude petroleum, pollution control, or radioactive waste disposal (Mumpton, 1978). The synthesis of zeolites with a particular crystal structure, and thus specific absorbtion characteristics, has become very competitive (Fox, 1985). Small, often barely detectable, changes in composition and structure are now covered by patents. A brief review of the crystal chemistry of this mineral group illustrates their potential and introduces those that occur as fibers. [Pg.68]

Fig. 2.17 Schematic representation of the structure of the zeolite natrolite [Na2Al2Si30io 2H2OI. (A) The (Si04, AIO4) chains, viewed parallel to c (along the chain length) and down c. The striped tetrahedra are AIO4. (B) The structure of natrolite and dehydrated natrolite. Solid circles are Na" , open circles are H2O, = axis of symmetry a/2 and b/2 indicate vector direction in the crystal structures. Note the rotation of tetrahedra and shift of the Na" positions in the dehydrated structure. Dehydration changes the configuration of the open areas between chains. Fig. 2.17 Schematic representation of the structure of the zeolite natrolite [Na2Al2Si30io 2H2OI. (A) The (Si04, AIO4) chains, viewed parallel to c (along the chain length) and down c. The striped tetrahedra are AIO4. (B) The structure of natrolite and dehydrated natrolite. Solid circles are Na" , open circles are H2O, = axis of symmetry a/2 and b/2 indicate vector direction in the crystal structures. Note the rotation of tetrahedra and shift of the Na" positions in the dehydrated structure. Dehydration changes the configuration of the open areas between chains.
Brcck, D. R. (1974). Zeolite Molecular Sieves. Wiley-Interscience, New York. Brenner, S. S. (1958). Growth and properties of whiskers. Science 128 569-575. Brindley, G. W. (1980). Order-disorder in clay mineral structures, pp. 125-195. In Brindley, G. W. and G. Brown, eds. Crystal Structures of Clay Minerals... [Pg.96]

Flanigen, E. M. (1977). Crystal structure and chemistry of natural zeolites, pp. 19— 52. In F. Mumpton, ed. Mineralogy and Geology of Natural Zeolites. Short Course Notes 4. Min. Soc. America. Washington, DC. [Pg.97]


See other pages where Zeolite crystal structures is mentioned: [Pg.95]    [Pg.48]    [Pg.228]    [Pg.66]    [Pg.219]    [Pg.38]    [Pg.249]    [Pg.20]    [Pg.85]    [Pg.213]    [Pg.233]    [Pg.99]    [Pg.101]    [Pg.975]    [Pg.57]    [Pg.250]    [Pg.21]    [Pg.24]    [Pg.56]    [Pg.57]    [Pg.105]    [Pg.280]    [Pg.68]   
See also in sourсe #XX -- [ Pg.3 ]

See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Crystallization zeolite

Zeolite crystals

Zeolites structure

Zeolitic crystals

© 2024 chempedia.info