Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detectors criteria

Nature In monitoring a moving threadhne, one criterion of quality would be the frequency of broken filaments. These can be identified as they occur through the threadhne by a broken-filament detector mounted adjacent to the threadhne. In this context, the random occurrences of broken filaments can be modeled by the Poisson distribution. This is called a Poisson process and corresponds to a probabilistic description of the frequency of defects or, in general, what are called arrivals at points on a continuous line or in time. Other examples include ... [Pg.489]

Another aspect of cost reduction would be solvent economy. The need to preferentially select inexpensive solvents and employ the minimum amount of solvent per analysis would be the third performance criteria. Finally, to conserve sample and to have the capability of determining trace contaminants, the fourth criterion would be that the combination of column and detector should provide the maximum possible mass sensitivity and, thus, the minimum amount of sample. The performance criteria are summarized in Table 1. Certain operating limits are inherent in any analytical instrument and these limits will vary with the purpose for which the instrument was designed. For example, the preparative chromatograph will have very different operating characteristics from those of the analytical chromatograph. [Pg.362]

A more difficult criterion to meet with flow markers is that the polymer samples not contain interferents that coelute with or very near the flow marker and either affect its retention time or the ability of the analyst to reproducibly identify the retention time of the peak. Water is a ubiquitous problem in nonaqueous GPC and, when using a refractive index detector, it can cause a variable magnitude, negative area peak that may coelute with certain choices of totally permeated flow markers. This variable area negative peak may alter the apparent position of the flow marker when the flow rate has actually been invariant, thereby causing the user to falsely adjust data to compensate for the flow error. Similar problems can occur with the elution of positive peaks that are not exactly identical in elution to the totally permeated flow marker. Species that often contribute to these problems are residual monomer, reactants, surfactants, by-products, or buffers from the synthesis of the polymer. [Pg.549]

Reliable analytical methods are available for determination of many volatile nitrosamines at concentrations of 0.1 to 10 ppb in a variety of environmental and biological samples. Most methods employ distillation, extraction, an optional cleanup step, concentration, and final separation by gas chromatography (GC). Use of the highly specific Thermal Energy Analyzer (TEA) as a GC detector affords simplification of sample handling and cleanup without sacrifice of selectivity or sensitivity. Mass spectrometry (MS) is usually employed to confirm the identity of nitrosamines. Utilization of the mass spectrometer s capability to provide quantitative data affords additional confirmatory evidence and quantitative confirmation should be a required criterion of environmental sample analysis. Artifactual formation of nitrosamines continues to be a problem, especially at low levels (0.1 to 1 ppb), and precautions must be taken, such as addition of sulfamic acid or other nitrosation inhibitors. The efficacy of measures for prevention of artifactual nitrosamine formation should be evaluated in each type of sample examined. [Pg.331]

Solute property detectors, such as spectroscopic andj electrochemical detectors, respond to a physical or chemical] property characteristic of the solute which, ideally, is] independent of the mobile phase. Althou this criterion is rarely met in practice, the signal discrimination is usually sufficient to permit operation with solvent changes (e.g., flow programming, gradient elution, etc.) and to provide high sensitivity with aj wide linear response range. Table 5.4. Solute-specific detectors complement ulk property detectors as they provide high ... [Pg.289]

Despite the considerable amount of information that has been garnered from more traditional methods of study it is clearly desirable to be able to generate, spectroscopically characterize and follow the reaction kinetics of coordinatively unsaturated species in real time. Since desired timescales for reaction will typically be in the microsecond to sub-microsecond range, a system with a rapid time response will be required. Transient absorption systems employing a visible or UV probe which meet this criterion have been developed and have provided valuable information for metal carbonyl systems [14,15,27]. However, since metal carbonyls are extremely photolabile and their UV-visible absorption spectra are not very structure sensitive, the preferred choice for a spectroscopic probe is time resolved infrared spectroscopy. Unfortunately, infrared detectors are enormously less sensitive and significantly slower... [Pg.86]

From the authors experience not all real data sets can be transformed to constant variance using power transformations. Instrumentation imperfections in our laboratory resulted in data that had variable variances despite our attempts at transformation. The transformed chlorothalonil data set, as shown in Table III illustrates a set where the transformations attempted nearly failed to give constant variance across the response range in this case the Hartley criterion was barely satisfied. The replications at the 0.1 and 20. ng levels had excessively high variance over the other levels. An example where constant variance was easily achieved utilized data of the insecticide chlordecone (kepone) also on the electron capture detector. Table II shows that using a transformation power of 0.3 resulted in nearly constant variance. [Pg.146]

For a given detector and a given pair of elements the last two factors give a single constant (Icab) that can be treated as a relative sensitivity factor. Both that factor and the method obtained their names after the two people who introduced them, Cliff and Lorimer (1975). The simplicity originates from the fact that the Uab factor does not depend either on the rest of elements also present in the sample or on the other parameters of the sample (thickness, density), as far as the thin film criterion is fulfilled. The Cliff-Lorimer factors can either be calculated using the known parameters of the detector or can be measured if a well-characterized thin film sample (standard) is available. In the first case the method is standardless. In the second case the known weight fractions and the measured intensity ratio provides the Cliff-Lorimer factor for the pair of elements. [Pg.213]

The confirmation of a compound s identity is only one half of the overall confirmation procedure quantitative confirmation is the other half. Compound concentrations calculated from analyses on two columns or two detectors must be in agreement. The EPA recommends a 40 percent difference (calculated as the RPD shown in Equation 1, Table 2.2) as a threshold value for making decisions on the presence or absence of a compound (EPA, 1996a). This means that the concentrations obtained from two columns or two detectors that agree within 40 percent indicate the presence of an analyte, provided that the retention time confirmation criterion has been also met. [Pg.227]

There are four major sources of extracolumn dispersion (i) dispersion due to the injection volume, (ii) dispersion due to the volume of the detector cell, (iii) dispersion due to the detector response time, and (iv) dispersion resulting from the volume in the connecting tubing between the injector and the column and also between the column and the detector. Thus, extracolumn dispersion takes place between the injector and the detector, only, and the system volume contributed by the solvent delivery system does not contribute to dispersion. The total permitted extracolumn dispersion (variance) is shared, albeit unequally, between those dispersion sources. A commonly accepted criterion for the instrumental contribution to zone broadening, suggested by Klinkenberg,17 is that it should not exceed 10% of the column variance. [Pg.248]

Many laboratories have a criterion of performance based on the percent chemical yield. The recovery, for example, may have to exceed 50% to meet this criterion. The radiochemical yield is the fractional recovery of the amount of added tracer. Its measurement requires that the counter efficiency (e) is known (see Experiment 6). The counting efficiency can have been determined in a previous experiment and recorded with the detector information. [Pg.129]

Parris and coworkers calculated figures of merit for the various modes of operation studied with their atomic absorption detector utilizing the procedure of Mandel and Stiehler . The latter devised a simple quantitative measure of merit for comparing proportionality quantities such as these calibration curves. They define sensitivity as a criterion which takes into account not only the reproducibility of precision of the test procedure, but which is also diagnostic of small variations in the property measured. Thus,... [Pg.202]


See other pages where Detectors criteria is mentioned: [Pg.488]    [Pg.44]    [Pg.195]    [Pg.391]    [Pg.2328]    [Pg.298]    [Pg.254]    [Pg.11]    [Pg.462]    [Pg.211]    [Pg.296]    [Pg.178]    [Pg.209]    [Pg.339]    [Pg.100]    [Pg.291]    [Pg.391]    [Pg.272]    [Pg.114]    [Pg.74]    [Pg.96]    [Pg.195]    [Pg.95]    [Pg.482]    [Pg.483]    [Pg.213]    [Pg.203]    [Pg.44]    [Pg.640]    [Pg.201]    [Pg.56]    [Pg.2083]    [Pg.272]    [Pg.400]    [Pg.130]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Detector performance criteria

Detectors selection criteria

Recommended Chemical Agent Concentration Criteria for Detectors

© 2024 chempedia.info