Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coupling synthetic applications

The transmetallation of lithio derivatives with either magnesium bromide or zinc chloride has been employed to increase further their range of synthetic application. While the reaction of l-methyl-2-pyrrolyllithium with iodobenzene in the presence of a palladium catalyst gives only a poor yield (29%) of coupled product, the yield can be dramatically improved (to 96%) by first converting the lithium compound into a magnesium or zinc derivative (Scheme 83) (81TL5319). [Pg.81]

The preparation of perfluoroalkylzinc compounds has been achieved earlier 111 ethereal solvents [26] However, solvent effects play a significant role in the course of this reaction When a mixture of acetic anhydride and methylene chloride is used, coupled and cross-coupled products can be formed [27, 28] (equations 19 and 20) However, the cross-coupling reaction often gives mixtures, a fact that seriously restricts the synthetic applicability of this reaction [27, 28, 29]... [Pg.674]

The synthetic applicability is rather limited, due to the various side-reactions observed, such as eliminations and rearrangement reactions. The attempted coupling of two different alkyl halides in order to obtain an unsymmetrical hydrocarbon, usually gives the desired product in only low yield. However the coupling reaction of an aryl halide with an alkyl halide upon treatment with a metal (the Wurtz-Fittig reaction) often proceeds with high yield. The coupling of two aryl halides usually does not occur under those conditions (see however below ) since the aryl halides are less reactive. [Pg.305]

Another synthetic application of an azo coupling reaction was found by Hecken-dorn (1987, 1990). In aqueous acetone a series of dialkyl (chloroacetamido)malo-nates, which are coupling components with a CH group activated by two carbonyl groups, were found to react with arenediazonium ions as in Scheme 12-44. The primary product cannot be isolated because it cyclizes easily to give a 1,2,4-triazin-5-one derivative (12.90). ... [Pg.338]

Kolbe electrolysis is a powerful method of generating radicals for synthetic applications. These radicals can combine to symmetrical dimers (chap 4), to unsymmetrical coupling products (chap 5), or can be added to double bonds (chap 6) (Eq. 1, path a). The reaction is performed in the laboratory and in the technical scale. Depending on the reaction conditions (electrode material, pH of the electrolyte, current density, additives) and structural parameters of the carboxylates, the intermediate radical can be further oxidized to a carbocation (Eq. 1, path b). The cation can rearrange, undergo fragmentation and subsequently solvolyse or eliminate to products. This path is frequently called non-Kolbe electrolysis. In this way radical and carbenium-ion derived products can be obtained from a wide variety of carboxylic acids. [Pg.92]

Propiolaldehyde diethyl acetal has found numerous synthetic applications in the literature which may be briefly summarized. The compound has been utilized in the synthesis of unsaturated and polyunsaturated acetals and aldehydes by alkylation of metal-lated derivatives, " by Cadiot-Chodkiewicz coupling with halo acetylenes, " and by reaction with organocuprates. Syntheses of heterocyclic compounds including pyrazoles, isoxazoles, triazoles, and pyrimidines have employed this three-carbon building block. Propiolaldehyde diethyl acetal has also been put to use in the synthesis of such natural products as polyacetylenes " and steroids. ... [Pg.8]

In terms of scope and chemoselectivity, hydrozirconation takes its place between hydroboration and hydroaiumination. However, the synthetic applications of organozirconocene complexes have been considerably expanded over these last few decades, and it can be expected that they will become more and more attractive in the future. Beside the direct substitution sequences, indirect reaction pathways involving transmetalation or activation by ligand abstraction have been successfully applied in a number of cross-coupling and C-C bond-forming reactions. [Pg.274]

Compared with ketoreductases, the synthetic application of alcohol oxidases has been less explored. However, selective oxidation of primary alcohols to aldehydes is superior to the chemical methods in terms of conversion yields, selectivity, and environmental friendliness of reaction conditions. In addition, coupling of alcohol oxidase with other enzymes provides a tremendous opportunity to develop multi-enzyme processes for the production of complex molecules. Therefore, a growing impact of alcohol oxidases on synthetic organic chemistry is expected in the coming years. [Pg.161]

The conventional methods of cross-coupling, though successfully applied to an overwhelming number of synthetic applications, leave unresolved a number of fundamental challenges, which... [Pg.318]

The reduction of organic halides is of practical importance for the treatment of effluents containing toxic organic halides and also for valuable synthetic applications. Direct electroreduction of alkyl and aryl halides is a kinetically slow process that requires high overpotentials. Their electrochemical activation is best achieved by use of electrochemically generated low-valent transition metal catalysts. Electrocatalytic coupling reactions of organic halides were reviewed in 1997.202... [Pg.485]

Because of its strong coupling with MW, its good adsorbent properties towards organic molecules [12], and its layer structure which enables it to form intercalated compounds [13], graphite has great potential in MW-assisted synthetic applications in organic chemistry, despite its weak fractal dimension (D x 2) [14]. [Pg.220]

Major advancements in the chemistry of pyrazoles, imidazoles, triazoles, tetrazoles, and related fused heterocyclic derivatives continued in 2000. Solid-phase combinatorial chemistry of pyrazoles and benzimidazoles has been particularly active. Synthetic routes to all areas continue to be pursued vigorously with improvements and applications. Notably, metal-promoted and cross-coupling reactions of all classes seemed to be a dominant theme in 2000. Applications of pyrazole-, imidazole-, and 1,2,3-benzotriazole-containing reagents to a wide array of synthetic applications remained active. [Pg.167]

Commensurately with the development of various catalyst systems, the Pd-catalyzed G-O cross-coupling has found a number of synthetic applications. Examples include the syntheses of the protein kinase G (PKC) activator (+)-decursin,104 the natural product heliannuol E,105 a chiral 2-methyl chroman,106 and a series of aryloxy and alkoxy porphyrins.107 The Buchwald-Hartwig coupling has also been utilized in the preparation of a heterocycle library.108 Intramolecular O-arylation has also been achieved in the reactions of enolates with aryl halides leading to benzofur-ans.109,110 Finally, a double cross-coupling between an 0-dibromobenzene and a glycol has also been applied for the preparation of benzodioxanes (Equation (16)).1... [Pg.656]

Besides the above electrophiles, the acetylene—titanium complexes react regioselectively with other acetylenes providing the corresponding titanacyclopentadienes. An example of a homo-coupling reaction is shown in Eq. 9.11 [30], which also displays some synthetic applications [30,31]. Especially noteworthy is the highly regioselective cross-coupling reaction of unsymmetrical internal and terminal acetylenes, which is illustrated in Eq. 9.12... [Pg.326]

In conclusion, the fantastically diverse chemistry of indole has been significantly enriched by palladium-catalyzed reactions. The accessibility of all of the possible halogenated indoles and several indolyl triflates has resulted in a wealth of synthetic applications as witnessed by the length of this chapter. In addition to the standard Pd-catalyzed reactions such as Negishi, Suzuki, Heck, Stille and Sonogashira, which have had great success in indole chemistry, oxidative coupling and cyclization are powerful routes to a variety of carbazoles, carbolines, indolocarbazoles, and other fused indoles. [Pg.163]

The cross-coupling reactions of allenes with components containing sp-carbon atoms are useful synthetic transformations since they provide yne-allenes and enyne-allenes, respectively. Due to the synthetic potential of these classes of carbon-rich unsaturated compounds, the scope and limitations were systematically investigated [1, 16-18]. The first synthetic application was reported in 1981, describing the preparation of alkynyl-substituted allenes by coupling of alkynylzinc chlorides with allenyl halides (Scheme 14.8) [11]. [Pg.851]

It is about 20 years since the combination of transition-metal catalysis and electroreduction was shown to be applicable to the coupling of organic molecules. This was followed by a number of fundamental investigations and basic syntheses using various nickel, cobalt, or pdladium compounds which can easily be reduced in situ electrochemically to low-valent reactive intermediates. The last decade has been less characterized by reports on new catalytic systems than by the development of new synthetic applications. The aim of this review is to show that the electrochemical processes described here offer valuable advantages in organic synthesis. [Pg.142]

One more useful synthetic application of primary Michael adducts onto 2-chloro-2-cyclopropylideneacetates 1 is the recently reported new approach to oc-tahydrospirocyclopropanepyrazinopyrazines 182. In the first step, the adducts of primary amines onto 1-Me (or 1-fBu) were coupled with AT-Boc- or N-Vmoc-protected glycine derivatives and the resulting products 178, after deprotection, cyclized under mildly basic conditions to give the spirocyclopropanehexahydro-pyrazinones 179,180 and hexahydrodiazepinediones 181 (Scheme 53) [89]. [Pg.196]

The metal complexing properties of macrocyclic compounds, coupled with the solubilities of their metal complexes in a variety of organic solvents, make them especially useful as reagents in organic syntheses. They provide a unique method for solubilizing inorganic salts such as KC1 in organic solvents. Despite their promise and the favorable results obtained thus far, it has been observed that few synthetic applications of these compounds have been reported (53). [Pg.186]

A few synthetic applications of palladium catalysis appeared this year. The palladium-catalyzed cyclization of amino allenes 58 occurs with coupling of aryl iodides or vinyl triflates at the 3-position <990L717, 99SL324>. The cyclization can also proceed by the exo-trig pathway, but under suitable reaction conditions the piperidine 59 is prepared selectively. The intramolecular cyclization of amines onto N-allylbenzotriazoles similarly affords piperidines <99JOC6066>. [Pg.251]

Intramolecular coupling to cyclic 1,2-diols and its synthetic applications... [Pg.39]

In view of the synthetic applications, among carbanions stabilized by only one divalent sulfur atom, allylic thiocarbanions proved to be particularly valuable, as shown with Biellmann coupling of allylic groups, applied to an elegant synthesis of squalene from farnesyl bromide [301]. In this synthesis, the retention of the allylic double bond position and stereochemistry in both the metallation-alkylation and the desulfurization steps are noteworthy. However, the results are not always as clear-cut, and... [Pg.156]


See other pages where Coupling synthetic applications is mentioned: [Pg.74]    [Pg.175]    [Pg.213]    [Pg.176]    [Pg.740]    [Pg.35]    [Pg.32]    [Pg.157]    [Pg.307]    [Pg.337]    [Pg.427]    [Pg.390]    [Pg.169]    [Pg.272]    [Pg.519]    [Pg.169]    [Pg.149]    [Pg.2]    [Pg.375]    [Pg.394]    [Pg.220]    [Pg.686]    [Pg.765]    [Pg.131]   
See also in sourсe #XX -- [ Pg.1120 ]




SEARCH



Coupling applications

Synthetic applications

© 2024 chempedia.info